Product Description


Our custom metal gear manufacturing process produces high-quality industrial gear components for heavy-duty applications. With a focus on precision, our mechanical transmission gears are designed to deliver reliable performance in any setting. The use of AlNiCo magnets in our gear assemblies ensures durability and long-lasting functionality. Our custom gear tooth machining services allow for the creation of unique and specialized gear parts tailored to your specific needs.

Utilizing 45 steel quenched gears and customized AlNiCo components, we offer a wide range of gear solutions for various industries. Whether you require cylindrical gear production, straight gear manufacturing, or custom industrial magnets, our team can deliver. Trust us for industrial gear machining, custom magnet manufacturing, and AlNiCo gear production that meets your exact specifications.


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Custom
Hardness: Soft Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Bevel Wheel
Material: Stainless Steel
US$ 20/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

aluminum gear

Can aluminum gears be used in automotive applications?

Aluminum gears can indeed be used in automotive applications. Here’s a detailed explanation:

1. Weight Reduction: Aluminum is a lightweight material compared to traditional options like steel. By using aluminum gears, automotive manufacturers can reduce the overall weight of the vehicle, which can lead to improved fuel efficiency and performance.

2. Corrosion Resistance: Aluminum gears can offer good corrosion resistance, making them suitable for automotive applications where exposure to moisture, road salt, and other corrosive elements is common. Proper surface treatments or coatings can further enhance their corrosion resistance.

3. Noise and Vibration Dampening: Aluminum gears can help reduce noise and vibration levels in automotive applications. The damping properties of aluminum contribute to a quieter and smoother operation, enhancing the overall driving experience.

4. Design Flexibility: Aluminum is highly formable, allowing the production of gears with complex shapes and intricate designs. This design flexibility can be advantageous in automotive applications where space constraints or specific gear geometries are required.

5. Heat Dissipation: Aluminum has good thermal conductivity, which helps dissipate heat generated during operation. This is especially beneficial in automotive applications where gears may be subjected to high temperatures due to heavy loads or intense driving conditions.

6. Cost-Effectiveness: Aluminum gears can offer a cost-effective solution for automotive manufacturers. The abundance of aluminum as a raw material and its relatively low cost compared to other metals make it an attractive option for mass production.

7. Specific Automotive Applications: Aluminum gears are commonly used in various automotive systems. For example, they can be found in transmissions, differentials, power steering systems, and engine timing systems. The specific performance requirements and operating conditions of these applications are carefully considered during gear design and material selection.

It’s important to note that while aluminum gears have many advantages, they also have limitations. Aluminum is not as strong as some other materials, and in high-torque or heavy-load automotive applications, alternative materials like steel or cast iron may be preferred for their higher strength and load-bearing capabilities.

In summary, aluminum gears can be successfully used in automotive applications, providing benefits such as weight reduction, corrosion resistance, noise and vibration dampening, design flexibility, heat dissipation, and cost-effectiveness. The suitability of aluminum gears depends on the specific requirements, operating conditions, and performance trade-offs of the automotive system in which they are used.

aluminum gear

Can aluminum gears be used in aerospace and aviation applications?

Aluminum gears can indeed be used in aerospace and aviation applications. Here’s a detailed explanation:

1. Weight Reduction: Aluminum is known for its lightweight properties. In aerospace and aviation industries, weight reduction is a critical factor for improving fuel efficiency, increasing payload capacity, and enhancing overall performance. Aluminum gears offer a significant advantage over heavier materials like steel, helping to achieve weight savings without compromising strength and functionality.

2. Corrosion Resistance: Aluminum alloys are inherently corrosion-resistant, especially when compared to ferrous materials like steel. In aerospace and aviation environments, where exposure to moisture, humidity, and harsh chemicals is common, corrosion resistance is vital. Aluminum gears can withstand these corrosive conditions, reducing the risk of gear degradation and ensuring long-term reliability.

3. Thermal Conductivity: Aluminum has excellent thermal conductivity, allowing for efficient heat dissipation. In aerospace and aviation applications, where gears may be subjected to high-speed rotations or heavy loads, heat generation can be a concern. Aluminum gears can effectively transfer and dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related failures.

4. Low Noise and Vibration: Aluminum gears possess inherent damping properties, which can contribute to lower noise and vibration levels. In aerospace and aviation, noise reduction is crucial for passenger comfort, crew safety, and compliance with regulatory requirements. Aluminum gears can help reduce gear-induced noise and vibration, enhancing the overall user experience.

5. Manufacturability: Aluminum is a highly formable material, enabling complex gear designs and intricate shapes. It can be fabricated through various processes such as casting, machining, or powder metallurgy, offering flexibility in manufacturing techniques. This allows for the production of custom gear geometries and optimized designs to meet specific aerospace and aviation requirements.

6. Compatibility with Composites: The aerospace and aviation industries widely use composite materials for their high strength-to-weight ratios. Aluminum gears can be designed to be compatible with composite structures, integrating seamlessly with other components in aircraft or spacecraft systems. This compatibility allows for efficient transmission of motion and power within composite assemblies.

7. Regulatory Compliance: Aluminum is a well-established material in aerospace and aviation industries, and its use in gears aligns with industry standards and regulatory requirements. The performance and reliability of aluminum gears have been extensively studied and validated, making them a trusted choice for critical applications.

In summary, aluminum gears are well-suited for aerospace and aviation applications due to their lightweight nature, corrosion resistance, thermal conductivity, low noise and vibration characteristics, manufacturability, compatibility with composites, and compliance with industry standards. These factors make aluminum gears a viable option for enhancing performance, efficiency, and safety in the aerospace and aviation sectors.

aluminum gear

What are the advantages of using aluminum gears in machinery?

Using aluminum gears in machinery offers several advantages. Here’s a detailed explanation:

1. Lightweight: One of the primary advantages of aluminum gears is their lightweight nature. Aluminum is significantly lighter than other commonly used gear materials such as steel or cast iron. This lightweight property reduces the overall weight of the machinery, resulting in benefits such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Corrosion Resistance: Aluminum gears can exhibit good corrosion resistance, especially when they are made from corrosion-resistant aluminum alloys. This makes them suitable for machinery operating in environments where exposure to moisture, chemicals, or other corrosive substances is a concern. The corrosion resistance of aluminum gears helps prolong their lifespan and ensures reliable performance in such conditions.

3. Low Noise: Aluminum gears have inherent damping properties that help reduce noise levels in machinery. The natural damping characteristics of aluminum help absorb vibrations and minimize noise generation during gear operation. This makes aluminum gears particularly advantageous in applications where noise reduction is important, such as in precision machinery or equipment used in noise-sensitive environments.

4. Heat Dissipation: Aluminum has excellent thermal conductivity, allowing for effective heat dissipation. When used in machinery, aluminum gears can help dissipate heat generated during operation, preventing overheating and maintaining optimal operating temperatures. Efficient heat dissipation contributes to the longevity and reliability of the machinery components.

5. Cost-Effective: Aluminum is generally more cost-effective compared to other metals commonly used for gears, such as steel or bronze. The abundance of aluminum as a raw material and its relatively low production costs make aluminum gears a cost-effective choice for machinery manufacturers. Additionally, the lightweight nature of aluminum gears can lead to cost savings in terms of transportation, installation, and energy consumption.

6. Design Flexibility: Aluminum gears offer design flexibility due to their ease of machining and formability. They can be manufactured with intricate tooth profiles and custom geometries to suit specific machinery requirements. The design flexibility of aluminum gears allows for optimization of gear performance, efficiency, and load-carrying capacity.

7. Electrical Conductivity: Aluminum is an excellent conductor of electricity. In machinery where electrical conductivity is required, such as in electric motors or equipment with electromagnetic components, aluminum gears can help facilitate efficient electrical connections and reduce electrical losses.

While aluminum gears offer numerous advantages, it’s important to consider their limitations. Aluminum has lower strength compared to materials like steel, which may restrict their use in high-load or high-torque applications. Additionally, proper lubrication and maintenance practices are crucial to ensure optimal performance and prevent excessive wear in aluminum gears.

In summary, the advantages of using aluminum gears in machinery include their lightweight nature, corrosion resistance, low noise levels, heat dissipation capabilities, cost-effectiveness, design flexibility, and electrical conductivity. These advantages make aluminum gears suitable for a wide range of machinery applications, particularly those where weight reduction, corrosion resistance, noise reduction, and thermal management are essential considerations.

China Best Sales Durable Aluminum Nickel Cobalt Customized Gear worm gearboxChina Best Sales Durable Aluminum Nickel Cobalt Customized Gear worm gearbox
editor by CX 2024-04-09