Product Description
OEM Stainless Steel Aluminum Planetary Helical Mask Gear With Blackening
Main Features:
1. Produce strictly in accordance with ANSI or DIN standard dimension
2. Material: 1045 Carbon Steel
3. Bore: Finished bore
4. Module: 1~3
Product Parameters
Product name | Spur Gear & Helical Gear & Gear Shaft |
Materials Available | Stainless Steel, Carbon Steel, Brass, Bronze, Iron, Aluminum Alloy etc |
Heat Treatment | Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding…… |
Surface Treatment | Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering |
BORE | Finished bore, Pilot Bore, Special request |
Processing Method | Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc |
Pressure Angle | 20 Degree |
Hardness | 55- 60HRC |
Size | Customer Drawings & ISO standard |
Package | Wooden Case/Container and pallet, or made-to-order |
Certificate | ISO9001:2008 |
Machining Process | Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping |
Applications | Toy, Automotive, instrument, electrical equipment, household appliances, furniture, mechanical equipment,daily living equipment, electronic sports equipment, , sanitation machinery, market/ hotel equipment supplies, etc. |
Advantages | 1. Produce strictly in accordance with ANSI or DIN standard dimension 2. Material: SCM 415 steel 3. Bore: Finished bore 4. Precision grade: DIN 5 to DIN 7 5. Surface treatment: Carburizing and Quenching 6. Module: From 1 to 4 7. Tooth: From Z15 to Z70 |
Specifction:
Number | Number of Teeth | Shaft Bore Dia. AH7 (1mm Increment) | Twisting Direction | B | C | D | E | F | G | ||
Type | Module | Straight Bore Straight Bore+Tap | Keyway+Tap | ||||||||
Straight Bore
Straight Bore+Tap Keyway+Tap |
1.0 | 20 | 6 | 8 | L(Left)
R(Right) |
17 | 20 | 22 | 8 | 10 | 18 |
22~ 28 | 8 | 8~13 | 18~20 | 22~28 | 24~30 | ||||||
30~48 | 10 | 10~17 | 25~30 | 30~48 | 32~50 | ||||||
50~70 | 12 | 12~17 | 35~40 | 50~70 | 52~72 | ||||||
80~100 | 15 | 15~30 | 50 | 80~100 | 82~102 | ||||||
1.5 | 20~26 | 12 | 12~17 | 24~32 | 30~39 | 33~42 | 12 | 12 | 24 | ||
28~44 | 15 | 15~30 | 36~50 | 42~67.5 | 45~70.5 | ||||||
45~52 | 18 | 18~40 | 50~60 | 72~78 | 75~81 | ||||||
60~100 | 20 | 20-50 | 60~70 | 90~150 | 93·153 | ||||||
2.0 | 15~18 | 12 | 12~17 | 24~30 | 30~36 | 34~40 | 16 | 13 | 29 | ||
20~28 | 15 | 15·22 | 32~45 | 40~56 | 44~60 | ||||||
30~36 | 18 | 18~40 | 50 | 60~72 | 64~76 | ||||||
40~48 | 20 | 20~44 | 60 | 80~96 | 84~100 | ||||||
50~100 | 25 | 25~60 | 60~100 | 100~200 | 104~204 | ||||||
2.5 | 15~18 | 15 | 15~30 | 30~38 | 37.5~45 | 42.5~50 | 20 | 14 | 34 | ||
20~24 | 18 | 18~40 | 40~48 | 50~60 | 55~65 | ||||||
25~36 | 20 | 20~50 | 50~70 | 62.5~90 | 67.5~95 | ||||||
40~60 | 25 | 25~70 | 70~80 | 90~150 | 95~155 | ||||||
3.0 | 15~18 | 18 | 18~22 | 36~40 | 45~54 | 51~60 | 25 | 16 | 4 |
Company Profile
Packaging & Shipping
FAQ
Main Markets? | North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia |
How to order? | * You send us drawing or sample |
* We carry through project assessment | |
* We give you our design for your confirmation | |
* We make the sample and send it to you after you confirmed our design | |
* You confirm the sample then place an order and pay us 30% deposit | |
* We start producing | |
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers. | |
* Trade is done, thank you!! |
If you are interested in our products, please tell us which materials, type, width, length u want.
Application: | Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Automation Equipment |
---|---|
Hardness: | Hardened Tooth Surface |
Gear Position: | External Gear |
Manufacturing Method: | Rolling Gear |
Toothed Portion Shape: | Spur Gear |
Material: | Stainless Steel |
Samples: |
US$ 10/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can aluminum gears withstand high torque and load conditions?
Aluminum gears have certain limitations when it comes to high torque and load conditions. Here’s a detailed explanation:
1. Strength: Aluminum is generally not as strong as materials like steel or cast iron. While aluminum alloys used for gears can offer good strength, they may not be as robust as traditional materials in terms of absolute strength. Under extremely high torque or heavy load conditions, there is a risk of deformation or failure of aluminum gears.
2. Design Considerations: To ensure that aluminum gears can withstand high torque and load conditions, proper design considerations are crucial. Factors such as gear geometry, tooth profile, tooth thickness, and material selection need to be carefully evaluated and optimized. Reinforcements, such as ribbing or thicker sections, can be incorporated into the gear design to enhance strength and load-bearing capacity.
3. Heat Dissipation: Aluminum has good thermal conductivity, which helps dissipate heat generated during high torque or heavy load operations. Heat can affect the performance and integrity of gears, leading to increased wear or potential failure. Proper lubrication and cooling mechanisms should be implemented to manage heat buildup and ensure optimal gear performance.
4. Surface Treatments: Surface treatments like hard anodizing or coatings can be applied to aluminum gears to improve their hardness, wear resistance, and surface durability. These treatments help mitigate the effects of high torque and load conditions, reducing the risk of surface damage or wear.
5. Application Considerations: The suitability of aluminum gears for high torque and load conditions depends on the specific application requirements. In some cases, aluminum gears may be well-suited for moderate torque and load applications, such as in certain automotive or machinery applications. However, in heavy-duty or extreme conditions, alternative materials like steel or cast iron may be more appropriate.
It’s important to note that engineering judgment, proper design practices, and thorough evaluation of the specific operating conditions are essential in determining whether aluminum gears can withstand high torque and load conditions. In critical applications where high torque or heavy loads are expected, gear manufacturers may choose materials with higher strength and load-bearing capabilities.
In summary, while aluminum gears can be used in certain high torque and load conditions, their suitability depends on factors such as gear design, material selection, heat dissipation, surface treatments, and application requirements. Careful consideration and engineering expertise are necessary to ensure safe and reliable operation of aluminum gears under these conditions.
Can aluminum gears be used in consumer electronics products?
Yes, aluminum gears can be used in consumer electronics products. Here’s a detailed explanation:
1. Lightweight Design: Consumer electronics products, such as smartphones, laptops, or cameras, often prioritize portability and lightweight design. Aluminum gears offer a significant advantage in these applications due to their lightweight properties. By using aluminum gears, manufacturers can contribute to reducing the overall weight of the device, making it more convenient for users to carry and handle.
2. Corrosion Resistance: Aluminum alloys have good corrosion resistance, making them suitable for consumer electronics products that may be exposed to moisture, humidity, or environmental elements. This corrosion resistance helps protect the gears from degradation and ensures long-term reliability, even in demanding usage conditions.
3. Electrical Insulation: Aluminum is an electrically non-conductive material, which can be advantageous in consumer electronics applications. Aluminum gears can help prevent electrical short circuits and interference, contributing to the overall safety and performance of the electronic device.
4. Manufacturability: Aluminum is a highly versatile material that can be easily machined or formed into intricate gear shapes. This manufacturability allows for the production of custom-designed gears that meet the specific requirements of consumer electronics products. Manufacturers can optimize gear designs for efficient power transmission, noise reduction, and space utilization.
5. Noise and Vibration Damping: Aluminum gears possess inherent damping properties, which can help reduce noise and vibration in consumer electronics devices. By incorporating aluminum gears, manufacturers can improve the overall user experience by minimizing gear-induced noise and vibration, leading to quieter and more comfortable operation.
6. Heat Dissipation: Consumer electronics products often generate heat during operation, especially in devices with motors or high-performance components. Aluminum’s excellent thermal conductivity allows it to efficiently dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related issues. Aluminum gears can contribute to efficient heat management within the device.
7. Cosmetic Appeal: Aluminum gears can also offer aesthetic benefits in consumer electronics products. The use of aluminum can give a sleek and modern appearance to the gears, enhancing the overall visual appeal of the device. Manufacturers can take advantage of aluminum’s surface finish options, such as anodizing or polishing, to achieve desired cosmetic effects.
8. Compatibility with Plastic Components: Many consumer electronics devices incorporate plastic components due to their versatility and cost-effectiveness. Aluminum gears can be compatible with plastic parts, allowing for efficient integration within the overall device assembly. This compatibility facilitates the design and manufacturing of compact and lightweight consumer electronics products.
In summary, aluminum gears can be effectively used in consumer electronics products, offering advantages such as lightweight design, corrosion resistance, electrical insulation, manufacturability, noise and vibration damping, heat dissipation, cosmetic appeal, and compatibility with plastic components. By incorporating aluminum gears, manufacturers can optimize the performance, functionality, and user experience of consumer electronics devices.
How do aluminum gears compare to other materials in terms of weight?
Aluminum gears have distinct advantages when it comes to weight. Here’s a detailed explanation:
1. Lightweight Nature: Aluminum gears are significantly lighter compared to gears made from other materials such as steel or cast iron. Aluminum has a lower density than these materials, resulting in gears that weigh less for the same size and shape.
2. Weight Reduction Benefits: The lightweight nature of aluminum gears offers several benefits:
- Improved Energy Efficiency: The reduced weight of aluminum gears contributes to improved energy efficiency in machinery. With lighter gears, less energy is required to rotate or move the gears, resulting in reduced power consumption.
- Reduced Inertia: The lower weight of aluminum gears reduces the inertia of rotating parts. This enables quicker acceleration and deceleration, leading to improved responsiveness and overall performance of the machinery.
- Easier Handling and Installation: Aluminum gears are easier to handle and install due to their lighter weight. This simplifies the assembly process and reduces the physical effort required for maintenance or replacement of gears.
3. Comparison with Other Materials: When compared to materials like steel or cast iron, aluminum gears can be up to three times lighter, depending on the specific alloys and manufacturing methods used.
4. Trade-off with Strength: It’s important to note that the lightweight nature of aluminum gears comes with a trade-off in terms of strength. Aluminum has lower strength compared to materials like steel, which limits the load-carrying capacity of aluminum gears. Therefore, aluminum gears are typically used in applications with lighter loads and lower torque requirements.
5. Application Considerations: The choice between aluminum gears and gears made from other materials depends on the specific application requirements. In applications where weight reduction is crucial, such as automotive or aerospace systems, aluminum gears can provide significant advantages. However, in applications with heavy loads or high torque, materials with higher strength, like steel, may be more suitable.
In summary, aluminum gears are notably lighter compared to gears made from materials like steel or cast iron. Their lightweight nature offers benefits such as improved energy efficiency, reduced inertia, and easier handling and installation. However, it’s important to consider the trade-off in strength when choosing aluminum gears for specific applications. By carefully assessing the weight requirements and load conditions, industries can determine whether aluminum gears are the optimal choice for their machinery.
editor by CX 2023-10-07