Product Description

Product Description

 

Product name Gear Aluminum Black Anodized Custom Small Spur Metal Gears
Matrial Aluminum
Brand Name DKL
Color and size OEM
Place of Origin ZheJiang
Process CNC Maching
Feature Precision
Packing Carton Packing

Company Profile

HangZhou Dakunlun Hardware & Plastic Products Co.,Ltd.  is a company engaged in Custom Products covering Custom CNC,Plastic Injection,Powder Metallurgy Parts ect. Hot Selling products include Gears,CNC Milling Parts Model Train Wheelsets Shaft,Bushing,Spacer and Brass Turning Parts ect. 

Dakunlun was established in May 2006, cooperated with many enterprises at home and abroad (such as Fenda ,LG, Philips Dji and Nissan) to establish a long term friendly business relationship.Our inception is to absorb a variety of talents, improve product quality and staff quality Strict quality guarantee system and perfect management system, high-quality products after-

sales service is our foothold. Our company of “quality first, reputation first” principle, provide customers with quality and quantity of various types of products. Always uphold the “quality, integrity and pragmatic, motivated, service-oriented” business philosophy, and apply to the company’s management and operating. In face of fierce competition, our company’s system is constantly being improved, relying on science and technology, continuously improve the technology content of products sold, for society, customers and companies to create a higher market value. Dakunlun has been in good faith to create enterprises and has won a good reputation, also won the respect of our domestic counterparts.

Recent years our company has reached annual sales of as much as ¥30,000,000, Dakunlun will expand the scale of operation and steady development of corporate economic, sincerely seek partners, good faith cooperation and common developmen

 

Certifications

Work Shop Facility

Customer Visit

Packaging & Shipping

FAQ

1. Are you trading company or manufacturer?
    We are a factory has 20 years.
2. How can i get a quotation?
    Please send us information for quote: drawing,material,quantity or other requirement.We can accpet PDF,DWG,STEP file formate.If you don’t have the drawing,please send the sample to us,we can quote base on your sample too.
3. What’s your MOQ?
    Depends on your specific items.
4. Do you provide samples?Is it free or extra.
    Yes,but it’s not free.
5. What about the lead time for mass production?
    Honestly,it depends on the order quantity.Normally,15 days to 20 days after your deposit if no tooling needed.
6. What if the part is not good?
    We can guarantee good quantity.But if happened,please contact us immediately,take some pictures,we will check on the problem,and solve it asap.
7. How to deliver the good?
   We deliver the products by courier company.
8. Can we get some samples before mass production?
    Absolutely yes.
9. Will my drawings be safe after sending them to you?
    Yes,we will keep them well and won’t release them to the third party without your permission.
    

 

Application: Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Custom
Toothed Portion Shape: Spur Gear
Material: Aluminum
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do you choose the right type of aluminum alloy for specific applications?

Choosing the right type of aluminum alloy for specific applications involves considering various factors. Here’s a detailed explanation:

1. Mechanical Properties: Assess the required mechanical properties for the application, such as strength, hardness, toughness, and wear resistance. Different aluminum alloys offer varying levels of these properties. For example, 2000 series alloys are known for their high strength, while 6000 series alloys offer a good balance of strength and formability.

2. Corrosion Resistance: Evaluate the environmental conditions the aluminum alloy will be exposed to. Some alloys have better corrosion resistance, making them suitable for applications in corrosive environments. For instance, 5000 series alloys are known for their excellent corrosion resistance.

3. Formability: Consider the required formability and ease of fabrication. Certain aluminum alloys, like 1000 and 3000 series, have excellent formability, making them suitable for applications that involve complex shapes or intricate designs.

4. Heat Treatability: Determine if heat treatment is necessary to achieve the desired mechanical properties. Some aluminum alloys, such as 7000 series, are heat-treatable and can be strengthened through heat treatment processes like solution heat treatment and aging.

5. Weight: Evaluate the weight requirements of the application. Aluminum alloys have lower density compared to many other metals, making them ideal for lightweight applications where weight reduction is critical, such as aerospace or automotive industries.

6. Cost: Consider the budget and cost constraints of the project. Different aluminum alloys have varying costs based on factors such as availability, production processes, and alloying elements. Balancing the desired properties with the project’s budget is important.

7. Compatibility: Ensure that the chosen aluminum alloy is compatible with other materials or components in the application. Compatibility includes factors such as galvanic corrosion potential, thermal expansion coefficients, and joining methods.

8. Industry Standards: Check if there are specific industry standards or regulations that dictate the use of particular aluminum alloys for certain applications. Industries such as aerospace, automotive, and marine often have specific alloy requirements based on performance and safety standards.

9. Consult Experts: When in doubt, consult with material engineers, metallurgists, or industry experts who have expertise in aluminum alloys. They can provide valuable insights and guidance based on their knowledge and experience.

Considering these factors in combination with the specific requirements and constraints of the application will help in choosing the right type of aluminum alloy. It’s important to note that selecting the most suitable alloy may involve trade-offs between different properties and considerations.

In summary, selecting the right type of aluminum alloy for specific applications involves assessing mechanical properties, corrosion resistance, formability, heat treatability, weight requirements, cost, compatibility, industry standards, and seeking expert advice. Taking a comprehensive approach ensures that the chosen aluminum alloy meets the performance, durability, and cost objectives of the application.

aluminum gear

Are there specific design considerations for using aluminum gears?

Using aluminum gears requires specific design considerations. Here’s a detailed explanation:

1. Material Selection: Aluminum alloys have different mechanical properties and characteristics. When designing aluminum gears, it’s important to select an alloy that meets the specific requirements of the application. Factors to consider include the desired strength, hardness, wear resistance, corrosion resistance, and thermal conductivity of the gear. The selected alloy should be suitable for the operating conditions and loads expected in the application.

2. Strength and Load Capacity: Aluminum is generally not as strong as some other materials like steel or cast iron. Therefore, when designing aluminum gears, it’s important to carefully consider the anticipated loads and stresses they will experience. Structural analysis, such as finite element analysis (FEA), can help determine the gear’s load capacity and structural integrity. Reinforcement techniques or incorporating additional support structures may be necessary in high-load applications.

3. Heat Dissipation: Aluminum has good thermal conductivity, which allows it to dissipate heat effectively. However, in applications where gears generate significant heat, thermal management becomes critical. Designing gear systems with proper cooling mechanisms, such as fins, heat sinks, or forced air circulation, can help prevent overheating and maintain optimal operating temperatures for the aluminum gears.

4. Gear Geometry: The design of aluminum gears should consider factors such as tooth profile, module, pressure angle, and tooth thickness. The gear geometry affects the gear’s load-carrying capacity, efficiency, noise level, and overall performance. It’s important to ensure proper tooth engagement, minimize stress concentrations, and optimize gear meshing characteristics to achieve the desired functionality and durability.

5. Lubrication: Lubrication is essential for aluminum gears to minimize friction, wear, and heat generation. Design considerations should include providing adequate space for lubricant reservoirs, channels, or oil passages to ensure proper lubricant distribution across the gear surfaces. The gear design should also facilitate efficient lubricant retention and minimize the risk of lubricant leakage or contamination.

6. Noise and Vibration: Aluminum gears can contribute to noise reduction due to their damping properties. However, the gear design should aim to further minimize noise and vibration levels. Considerations include gear tooth profile optimization, gear tooth surface finish, backlash control, and the use of noise-dampening features such as gear coatings or sound-absorbing materials.

7. Manufacturability: Designing aluminum gears should take into account the manufacturability aspects. Aluminum is a highly formable material, allowing for complex gear shapes and intricate designs. However, considerations such as casting or machining processes, tooling requirements, dimensional tolerances, and surface finish specifications should be addressed to ensure consistent and cost-effective production.

8. Compatibility with Other Components: Aluminum gears are often used in conjunction with other components within a larger system. It’s important to ensure compatibility between aluminum gears and other materials or components they interact with. Factors such as galvanic corrosion, differential thermal expansion, or material compatibility should be considered to prevent premature failure or performance issues.

By addressing these specific design considerations, aluminum gears can be effectively utilized in various applications, taking advantage of their unique properties and benefits.

aluminum gear

What industries commonly use aluminum gears?

Aluminum gears find applications in various industries. Here’s a detailed explanation:

1. Automotive Industry: The automotive industry extensively uses aluminum gears, particularly in transmissions and differentials. The lightweight nature of aluminum gears helps improve fuel efficiency and overall vehicle performance. Additionally, aluminum gears are used in engine timing systems, power steering mechanisms, and other automotive components.

2. Aerospace Industry: Aluminum gears are utilized in the aerospace industry for applications such as aircraft engines, landing gear systems, and actuation mechanisms. The weight reduction benefits of aluminum gears are particularly valuable in aerospace, where minimizing weight is crucial for fuel efficiency and payload capacity.

3. Railway Industry: Aluminum gears are employed in various railway applications, including propulsion systems, gearboxes, and braking systems. The lightweight nature of aluminum gears helps reduce energy consumption and enhances the overall efficiency of railway systems. Additionally, aluminum gears offer corrosion resistance, which is advantageous in railway environments.

4. Marine Industry: Aluminum gears are used in marine applications, such as boat propulsion systems, marine engines, and winches. The corrosion resistance of aluminum gears is especially important in marine environments where exposure to saltwater and moisture is common.

5. Machinery and Equipment Manufacturing: Aluminum gears are utilized in a wide range of machinery and equipment, including industrial machinery, agricultural equipment, construction machinery, and material handling systems. The lightweight nature, corrosion resistance, and design flexibility of aluminum gears make them suitable for various machinery applications.

6. Electronics and Robotics: Aluminum gears are employed in electronics and robotics applications where weight reduction, compact size, and electrical conductivity are essential. They are used in precision equipment, robotic arms, automation systems, and various electromechanical devices.

7. Medical Equipment: The medical equipment industry utilizes aluminum gears in devices such as imaging equipment, robotic surgical systems, and diagnostic instruments. Aluminum gears offer advantages such as lightweight construction, noise reduction, and electrical conductivity in medical applications.

8. Sports and Recreation: Aluminum gears are used in sports and recreational equipment, including bicycles, motorcycles, scooters, and fitness machines. The lightweight nature of aluminum gears contributes to improved performance, maneuverability, and user experience in these applications.

9. Power Generation: Aluminum gears find applications in power generation systems, such as wind turbines and hydroelectric generators. The lightweight construction of aluminum gears facilitates efficient energy conversion and reduces the loads on the power transmission components.

These are just a few examples of the industries that commonly use aluminum gears. The versatility, lightweight nature, corrosion resistance, and other advantageous properties of aluminum gears make them suitable for a wide range of applications across numerous industries.

China high quality Gear Aluminum Black Anodized Custom Small Spur Metal Gears bevel gearboxChina high quality Gear Aluminum Black Anodized Custom Small Spur Metal Gears bevel gearbox
editor by CX 2023-11-07