Product Description



Product Description





Precision grade


Pressure angle:

14.5 degree, 15 degree, 20 degree


C45 steel, ,304SS, 316SS, 20CrMo,40Cr, brass, nylon, POM, and so on

Heat treatment

Hardening and Tempering

High Frequency Quenching

Carburization etc

Surface treatment

Blacking, Polishing, Anodization, Chrome Plating, Zinc Plating, Nickel Plating


Precision cutting machines.Lathes machine
Milling machines
Grinders machine
Automated mechanical systems
Automated warehousing systems.

Machining process:

CNC engine latheCNC milling machine
CNC drilling machine
CNC grinding machine
CNC cutting machines
Machining center

Detailed Photos


Inspection steps before delivery: Use GO/Nogo inspect hole—Use micrometer check dimensions—Next use stiffness detection system inspect hardness–Finally use CMM inspect precision

Packaging & Shipping


Company Profile

ZheJiang Haorongshengye Electrical Equipment Co., Ltd.

1. Was founded in 2008
2. Our Principle:

“Credibility Supremacy, and Customer First”
3. Our Promise:

“High quality products, and Excellent Service”
4. Our Value:

“Being Honesty, Doing the Best, and Long-lasting Development”
5. Our Aim:

“Develop to be a leader in the power transmission parts industry in the world”

6.Our services:

1).Competitive price

2).High quality products

3).OEM service or can customized according to your drawings

4).Reply your inquiry in 24 hours

5).Professional technical team 24 hours online service

6).Provide sample service

Main products




Application: Machinery
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
US$ 100/Piece
1 Piece(Min.Order)

Request Sample



Customized Request

aluminum gear

How do aluminum gears perform in different environments?

The performance of aluminum gears in different environments can vary depending on several factors. Here’s a detailed explanation:

1. Corrosive Environments: Aluminum gears generally offer good corrosion resistance, especially when compared to materials like steel. They can perform well in environments where exposure to moisture, chemicals, or corrosive substances is common. However, in highly acidic or alkaline environments, aluminum may not provide sufficient corrosion resistance, and alternative materials or protective coatings may be required.

2. High-Temperature Environments: Aluminum has a relatively low melting point compared to some other metals. In high-temperature environments, aluminum gears can experience thermal expansion, which may affect their dimensional stability and operating characteristics. Additionally, prolonged exposure to high temperatures can weaken aluminum alloys and reduce their mechanical properties. Therefore, in applications involving high temperatures, careful consideration of alloy selection and thermal management measures is necessary.

3. Low-Temperature Environments: Aluminum gears generally perform well in low-temperature environments. They exhibit good ductility and toughness even at low temperatures, allowing them to withstand sub-zero conditions without significant loss of performance. This makes aluminum gears suitable for applications in cold climates or environments.

4. High-Humidity Environments: Aluminum gears can tolerate high humidity environments without significant performance degradation. However, there is a risk of moisture absorption by the aluminum material, which can lead to galvanic corrosion or degradation of lubricating properties. Proper sealing, lubrication, and preventive maintenance practices are important to mitigate these risks.

5. Abrasive Environments: In environments where gears are exposed to abrasive particles or high levels of wear, aluminum gears may not offer the same level of wear resistance as materials like steel or hardened alloys. The relatively softer nature of aluminum can result in accelerated wear or damage to the gear teeth. In such cases, surface treatments, coatings, or alternative materials may be necessary to enhance wear resistance.

6. Electrical Environments: Aluminum is an electrically conductive material. In electrical environments, there is a possibility of electrical arcing or the formation of galvanic couples with dissimilar metals. Proper insulation, grounding, and preventive measures should be implemented to avoid any adverse effects on gear performance or electrical systems.

It’s important to consider the specific environmental conditions and requirements of the gear application when assessing the performance of aluminum gears. In many cases, aluminum gears can perform satisfactorily in various environments with proper design, material selection, lubrication, and maintenance practices. However, for extreme or highly specialized environments, alternative materials or additional protective measures may be necessary.

In summary, the performance of aluminum gears in different environments depends on factors such as corrosion resistance, temperature effects, humidity, abrasion resistance, electrical properties, and specific application considerations. Understanding these factors and implementing appropriate measures ensures optimal performance and durability of aluminum gears in diverse environmental conditions.

aluminum gear

How do aluminum gears handle shock and impact loads?

Aluminum gears can effectively handle shock and impact loads. Here’s a detailed explanation:

1. Material Strength: Aluminum alloys used for gears exhibit good strength properties, allowing them to withstand sudden shock and impact loads. While aluminum is not as strong as materials like steel, proper gear design and material selection can ensure that aluminum gears meet the required load-bearing capacity for specific applications.

2. Flexibility and Ductility: Aluminum possesses inherent flexibility and ductility, which can help absorb and distribute impact forces. When subjected to shock or impact loads, aluminum gears can deform slightly to dissipate energy and reduce the risk of immediate failure. This characteristic allows aluminum gears to handle sudden and high-intensity loads without catastrophic damage.

3. Resilience: Aluminum gears have a certain degree of resilience, meaning they can recover their original shape after experiencing deformation from shock or impact loads. This resilience allows aluminum gears to continue functioning effectively even after encountering transient high loads.

4. Design Considerations: Proper gear design is crucial for handling shock and impact loads effectively. Engineers can incorporate features such as reinforced tooth profiles, optimized gear geometry, and appropriate surface treatments to enhance the strength and durability of aluminum gears. These design considerations help distribute stress evenly across the gear teeth, minimizing the risk of localized failures.

5. Load Distribution: Aluminum gears can distribute shock and impact loads over a larger contact area, reducing the concentration of stress on individual gear teeth. This load distribution capability prevents localized stress points and helps prevent premature tooth wear or breakage.

6. Surface Treatments: Surface treatments like shot peening or case hardening can be applied to aluminum gears to enhance their resistance to shock and impact loads. These treatments introduce compressive stresses on the gear surface, improving its fatigue strength and resistance to crack initiation and propagation caused by sudden loads.

7. Compatibility with Other Components: Aluminum gears can be designed to work in conjunction with other components in the system to handle shock and impact loads. By considering the overall system dynamics and ensuring compatibility between gears, bearings, shafts, and housing materials, the entire system can better absorb and distribute impact forces, improving its overall resilience.

8. Testing and Validation: Aluminum gears undergo rigorous testing and validation processes to ensure their performance under shock and impact loads. These tests simulate real-world operating conditions, including sudden impacts and high-intensity loads, to assess the gear’s durability and reliability. Manufacturers rely on these tests to verify that aluminum gears can handle the expected shock and impact loads in specific applications.

In summary, aluminum gears handle shock and impact loads through their material strength, flexibility, ductility, resilience, design considerations, load distribution capability, surface treatments, compatibility with other components, and validation through testing. By employing appropriate design practices and material selection, aluminum gears can reliably and effectively handle sudden and high-intensity loads in various applications.

aluminum gear

How do aluminum gears compare to other materials in terms of weight?

Aluminum gears have distinct advantages when it comes to weight. Here’s a detailed explanation:

1. Lightweight Nature: Aluminum gears are significantly lighter compared to gears made from other materials such as steel or cast iron. Aluminum has a lower density than these materials, resulting in gears that weigh less for the same size and shape.

2. Weight Reduction Benefits: The lightweight nature of aluminum gears offers several benefits:

  • Improved Energy Efficiency: The reduced weight of aluminum gears contributes to improved energy efficiency in machinery. With lighter gears, less energy is required to rotate or move the gears, resulting in reduced power consumption.
  • Reduced Inertia: The lower weight of aluminum gears reduces the inertia of rotating parts. This enables quicker acceleration and deceleration, leading to improved responsiveness and overall performance of the machinery.
  • Easier Handling and Installation: Aluminum gears are easier to handle and install due to their lighter weight. This simplifies the assembly process and reduces the physical effort required for maintenance or replacement of gears.

3. Comparison with Other Materials: When compared to materials like steel or cast iron, aluminum gears can be up to three times lighter, depending on the specific alloys and manufacturing methods used.

4. Trade-off with Strength: It’s important to note that the lightweight nature of aluminum gears comes with a trade-off in terms of strength. Aluminum has lower strength compared to materials like steel, which limits the load-carrying capacity of aluminum gears. Therefore, aluminum gears are typically used in applications with lighter loads and lower torque requirements.

5. Application Considerations: The choice between aluminum gears and gears made from other materials depends on the specific application requirements. In applications where weight reduction is crucial, such as automotive or aerospace systems, aluminum gears can provide significant advantages. However, in applications with heavy loads or high torque, materials with higher strength, like steel, may be more suitable.

In summary, aluminum gears are notably lighter compared to gears made from materials like steel or cast iron. Their lightweight nature offers benefits such as improved energy efficiency, reduced inertia, and easier handling and installation. However, it’s important to consider the trade-off in strength when choosing aluminum gears for specific applications. By carefully assessing the weight requirements and load conditions, industries can determine whether aluminum gears are the optimal choice for their machinery.

China Hot selling Nylon Plastic POM Aluminum Steel Spur Pinion Helical Gear straight bevel gearChina Hot selling Nylon Plastic POM Aluminum Steel Spur Pinion Helical Gear straight bevel gear
editor by CX 2023-09-23