Product Description

High Precision Grinding OEM ODM Aluminum Steel Lithium Helical Gears

Gear transmission relies on the thrust between gear teeth to transmit motion and power, also known as meshing transmission. With this gradual meshing, helical gears operate much more smoothly and quietly than spur gears. Therefore, almost all automobile transmissions use helical gears.Since the teeth on the helical gear present a certain angle, the gears will be under a certain amount of  stress when they mesh. Equipment using helical gears is equipped with bearings to withstand this pressure.

Product Description

Main Features:

Spur Gear
1. Produce strictly in accordance with ANSI or DIN standard dimension
2. Material: SCM 415 steel 
3. Bore: Finished bore
4. Precision grade: DIN 5 to DIN 7
5. Surface treatment: Carburizing and Quenching
6. Module: From 1 to 4
7. Tooth: From Z15 to Z70 

Product name Spur Gear & Helical Gear & Gear Shaft
Customized service OEM, drawings or samples customize
Materials Available Stainless Steel, Carbon Steel, S45C, SCM415, 20CrMoTi, 40Cr, Brass, SUS303/304, Bronze, Iron, Aluminum Alloy etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Surface Treatment Conditioning, Carburizing and Quenching,Tempering ,High frequency quenching, Tempering, Blackening, QPQ, Cr-plating, Zn-plating, Ni-plating, Electroplate, Passivation, Picking, Plolishing, Lon-plating, Chemical vapor deposition(CVD), Physical vapour deposition(PVD)…
BORE Finished bore, Pilot Bore, Special request
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Pressure Angle 20 Degree
Hardness 55- 60HRC
Size Customer Drawings & ISO standard
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001:2008
Machining Process Gear Hobbing, Gear Milling, Gear Shaping, Gear Broaching, Gear Shaving, Gear Grinding and Gear Lapping
Applications Printing Equipment Industry, Laser Equipment Industry, Automated Assemblyline Industry, Woodening Industry, Packaging Equipment Industry, Logistics storage Machinery Industry, Robot Industry, Machine Tool Equipment Industry

Company Profile

Packaging & Shipping

Packaging Polyethylene bag or oil paper for each item;
Pile on carton or as customer’s demand
Delivery of Samples By DHL, Fedex, UPS,  TNT, EMS
Lead time 10-15 working days as usual, 30days in busy season, it will based on the detailed order quantity.

 

FAQ

Main Markets? North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order? * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

If you are interested in our products, please tell us which materials, type, width, length u want. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car, Laser Equipment
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Double Helical Gear
Material: Stainless Steel
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do aluminum gears handle lubrication and wear?

Aluminum gears handle lubrication and wear in specific ways. Here’s a detailed explanation:

1. Lubrication: Proper lubrication is crucial for the performance and longevity of aluminum gears. Lubricants reduce friction between gear surfaces, prevent metal-to-metal contact, and dissipate heat. Aluminum gears typically require lubricants with good film-forming properties and adequate load-carrying capacity. The lubricant forms a thin film between the gear teeth, reducing wear and providing protection against surface damage. Lubrication also helps minimize noise and vibration in the gear system.

2. Lubricant Selection: When selecting a lubricant for aluminum gears, several factors need to be considered. These include the operating conditions (temperature, speed, and load), compatibility with the gear material and other components, desired viscosity, and the lubricant’s ability to resist oxidation and maintain its properties over time. It’s important to consult lubricant manufacturers or industry standards to ensure the right lubricant is chosen for the specific application.

3. Lubrication Methods: Aluminum gears can be lubricated using various methods. Common approaches include splash lubrication, oil bath lubrication, and forced lubrication systems. The lubrication method depends on the gear design, operating conditions, and lubrication requirements of the specific application. Proper lubrication system design and maintenance are essential to ensure effective lubrication throughout the gear’s service life.

4. Wear: Wear is an inevitable phenomenon in gear systems, including those with aluminum gears. Wear occurs due to the cyclic contact and sliding between gear teeth, which leads to material removal and surface degradation. However, aluminum gears can exhibit good wear resistance, especially when properly lubricated and designed. The lubricant forms a protective film that minimizes direct metal-to-metal contact, reducing wear. Additionally, aluminum alloys often have self-lubricating properties, resulting from the formation of oxide layers on the gear surface.

5. Surface Treatments: Surface treatments can improve the wear resistance of aluminum gears. Processes such as hard coating, anodizing, or surface modification techniques can enhance the surface hardness, reduce friction, and provide additional protection against wear. These treatments can extend the gear’s lifespan and enhance its performance in demanding applications.

6. Inspections and Maintenance: Regular inspections and maintenance are vital to monitor the condition of aluminum gears and ensure proper lubrication. Visual inspections, oil analysis, and monitoring gear performance can help detect signs of wear, lubricant degradation, or inadequate lubrication. Timely maintenance actions such as lubricant replenishment, filter replacement, and gear reconditioning can prevent excessive wear and prolong the gear’s service life.

It’s important to note that the specific lubrication and wear characteristics of aluminum gears may vary depending on factors such as the alloy used, gear geometry, operating conditions, and maintenance practices. Consulting with gear manufacturers, lubrication experts, or industry professionals can provide further insights into optimizing lubrication and mitigating wear in aluminum gear applications.

In summary, aluminum gears handle lubrication and wear through proper lubrication practices, careful selection of lubricants, appropriate lubrication methods, wear-resistant surface treatments, and regular inspections and maintenance. These measures ensure effective lubrication, reduce wear, and extend the lifespan of aluminum gears in various applications.

aluminum gear

How do aluminum gears contribute to reducing overall system weight?

Aluminum gears play a significant role in reducing the overall weight of a system. Here’s a detailed explanation:

1. Lightweight Material: Aluminum is known for its lightweight properties. Compared to materials like steel or cast iron, aluminum has a much lower density. By using aluminum gears instead of heavier alternatives, the weight of the gear components within a system can be significantly reduced.

2. Weight Reduction Benefits: The reduction in gear weight can have a cascading effect on the entire system. As gears are often integral components in various mechanical systems, such as automotive transmissions or industrial machinery, their weight reduction directly contributes to the overall weight reduction of the system. This weight reduction can lead to several benefits, including improved fuel efficiency (in vehicles), increased payload capacity, enhanced performance, and easier handling or installation.

3. Structural Efficiency: Aluminum gears offer a high strength-to-weight ratio. Despite their lightweight nature, aluminum alloys can provide sufficient strength and durability to withstand the operational loads and stresses encountered in various applications. This structural efficiency allows for the design and implementation of lighter gear systems without compromising performance or reliability.

4. System-Level Weight Optimization: The weight reduction achieved by using aluminum gears enables system designers to explore additional weight-saving measures. With lighter gears, other components within the system, such as shafts, bearings, or housings, can also be designed with lighter materials or reduced dimensions. This holistic approach to weight optimization across the entire system can result in significant overall weight reduction.

5. Aerospace and Automotive Applications: The weight reduction benefits of aluminum gears are particularly valuable in industries where weight plays a critical role, such as aerospace and automotive sectors. In aerospace applications, reducing the weight of aircraft components contributes to improved fuel efficiency, extended range, increased payload capacity, and enhanced maneuverability. Similarly, in the automotive industry, lightweight gear systems can contribute to fuel economy improvements, reduced emissions, and better vehicle performance.

6. Material Substitution: Aluminum gears can serve as substitutes for heavier gears made from materials like steel or cast iron. By replacing these heavier gears with aluminum alternatives, the weight reduction is achieved without sacrificing functionality or compromising the intended purpose of the gear system.

7. Design Flexibility: Aluminum is a highly formable material, allowing for versatile and complex gear designs. The flexibility in design enables engineers to optimize gear geometries and tooth profiles to maximize efficiency and minimize weight. This design flexibility, coupled with the lightweight properties of aluminum, contributes to effective weight reduction strategies.

8. Manufacturing Efficiency: Aluminum gears can be manufactured using various processes, such as casting, extrusion, or machining. These processes offer cost-effective production methods, reducing material waste and energy consumption. The manufacturing efficiency associated with aluminum gears further supports overall weight reduction initiatives.

In conclusion, aluminum gears contribute to reducing the overall weight of a system through their lightweight nature, high strength-to-weight ratio, structural efficiency, system-level weight optimization, applicability in weight-sensitive industries, material substitution, design flexibility, and manufacturing efficiency. By utilizing aluminum gears, system designers can achieve significant weight savings while maintaining the required functionality and performance.

aluminum gear

How do aluminum gears compare to other materials in terms of weight?

Aluminum gears have distinct advantages when it comes to weight. Here’s a detailed explanation:

1. Lightweight Nature: Aluminum gears are significantly lighter compared to gears made from other materials such as steel or cast iron. Aluminum has a lower density than these materials, resulting in gears that weigh less for the same size and shape.

2. Weight Reduction Benefits: The lightweight nature of aluminum gears offers several benefits:

  • Improved Energy Efficiency: The reduced weight of aluminum gears contributes to improved energy efficiency in machinery. With lighter gears, less energy is required to rotate or move the gears, resulting in reduced power consumption.
  • Reduced Inertia: The lower weight of aluminum gears reduces the inertia of rotating parts. This enables quicker acceleration and deceleration, leading to improved responsiveness and overall performance of the machinery.
  • Easier Handling and Installation: Aluminum gears are easier to handle and install due to their lighter weight. This simplifies the assembly process and reduces the physical effort required for maintenance or replacement of gears.

3. Comparison with Other Materials: When compared to materials like steel or cast iron, aluminum gears can be up to three times lighter, depending on the specific alloys and manufacturing methods used.

4. Trade-off with Strength: It’s important to note that the lightweight nature of aluminum gears comes with a trade-off in terms of strength. Aluminum has lower strength compared to materials like steel, which limits the load-carrying capacity of aluminum gears. Therefore, aluminum gears are typically used in applications with lighter loads and lower torque requirements.

5. Application Considerations: The choice between aluminum gears and gears made from other materials depends on the specific application requirements. In applications where weight reduction is crucial, such as automotive or aerospace systems, aluminum gears can provide significant advantages. However, in applications with heavy loads or high torque, materials with higher strength, like steel, may be more suitable.

In summary, aluminum gears are notably lighter compared to gears made from materials like steel or cast iron. Their lightweight nature offers benefits such as improved energy efficiency, reduced inertia, and easier handling and installation. However, it’s important to consider the trade-off in strength when choosing aluminum gears for specific applications. By carefully assessing the weight requirements and load conditions, industries can determine whether aluminum gears are the optimal choice for their machinery.

China OEM High Precision Grinding OEM ODM Aluminum Steel Lithium Helical Gears helical bevel gearChina OEM High Precision Grinding OEM ODM Aluminum Steel Lithium Helical Gears helical bevel gear
editor by CX 2024-04-15