Product Description

                                   
                                                      
OEM Metal Machining Service

Product Description

Material: Aluminum (5052,5053 6061, 6061-T6 6063, 7075-T6,7075-) ,
Carbon steel. stainless steel,
Brass,Bronze,etc…
Process:

CNC machining, CNC turning, 3/4/5 axis CNC milling, wire-cutting, EDM, grinding.
Drilling, Tapping, welding, bending,die casting, stamping and etc.

Surface treatment: Clear/color anodized; Hard anodized; Powder-coating;
Sand-blasting; Painting;
Nickel plating; Chrome plating; Zinc plating; Silver/gold plating;
Black oxide coating, Polishing etc…
General Tolerance:
(+/-mm)
CNC Machining: 0.005
Turning: 0.005
Grinding(Flatness/in2): 0.003
ID/OD Grinding: 0.002
Wire-Cutting: 0.002
Certification: ISO9001:2015, IATF 16949, SGS,TUV
Lead time : In general:7-15days
Special custom service: making arrangement CHINAMFG customers’ request
Roughness : Ra≤0.1
Packaging : Standard: pearl cotton and bubble bag, carton box and seal
For large and big quantity: pallet or as per customers’ requirement
Term of Payment: T/T, Paypal, Trade assurance etc…
Delivery way: Express(DHL,Fedex, UPS,TNT,EMS), By Sea, By air, or on your requirement

1.Details

2.Machining technology

3.Surface Treatment

4.Inspection process
In order to ensure the quality of the orders, our independent  QC  members to carry out strict inspection at each stage:   
(1) Inspection in-house and third party  
(2) All the products are strictly inspected by operator and skilled QC with record put down. 
(3) Universal inspection tools: hardness tester, height ruler etc.

5.Package

6.About us

HangZhou Xihu (West Lake) Dis. Machinery Co., Ltd. Jointly manufactures and exports a variety of casting products for architectural, automotive, mechanical parts. We export to more than 20 countries on 6 continents and have been doing so for more than 10 years.
Our main product line includes sand casting, precision casting, die casting, forging, stamping, welding and CNC machining. Materials vary from grey iron, ductile iron, bronze, aluminum, steel, stainless steel, and so on.

We have a strong and highly efficient R&D team which can design and make OEM/ODM products according to your ideas and samples.
Moreover, in order to ensure the quality of the orders, our independent QC members to carry out strict inspection at each stage:
(1) Incoming material inspection
(2) Inspection of work-in-progress
(3) Finished product inspection
(4) Random warehouse inspections
All of our operations are strictly compliant with ISO 9001: 2008 guidelines
We own automated casting lines, CNC machining, CMM inspection, spectrometers and MT testing equipment, X-ray.
To benefit from our strong OEM/ODM capabilities and considerate services, contact us today. We will sincerely create and share success with all clients.

 

Application: Fastener, Auto and Motorcycle Accessory, Hardware Tool, Machinery Accessory
Standard: GB, EN, API650, China GB Code, JIS Code, TEMA, ASME
Surface Treatment: Electroplating
Production Type: Mass Production
Machining Method: CNC Machining
Material: Steel, Brass, Alloy, Copper, Aluminum, Iron
Samples:
US$ 5/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do aluminum gears perform in different environments?

The performance of aluminum gears in different environments can vary depending on several factors. Here’s a detailed explanation:

1. Corrosive Environments: Aluminum gears generally offer good corrosion resistance, especially when compared to materials like steel. They can perform well in environments where exposure to moisture, chemicals, or corrosive substances is common. However, in highly acidic or alkaline environments, aluminum may not provide sufficient corrosion resistance, and alternative materials or protective coatings may be required.

2. High-Temperature Environments: Aluminum has a relatively low melting point compared to some other metals. In high-temperature environments, aluminum gears can experience thermal expansion, which may affect their dimensional stability and operating characteristics. Additionally, prolonged exposure to high temperatures can weaken aluminum alloys and reduce their mechanical properties. Therefore, in applications involving high temperatures, careful consideration of alloy selection and thermal management measures is necessary.

3. Low-Temperature Environments: Aluminum gears generally perform well in low-temperature environments. They exhibit good ductility and toughness even at low temperatures, allowing them to withstand sub-zero conditions without significant loss of performance. This makes aluminum gears suitable for applications in cold climates or environments.

4. High-Humidity Environments: Aluminum gears can tolerate high humidity environments without significant performance degradation. However, there is a risk of moisture absorption by the aluminum material, which can lead to galvanic corrosion or degradation of lubricating properties. Proper sealing, lubrication, and preventive maintenance practices are important to mitigate these risks.

5. Abrasive Environments: In environments where gears are exposed to abrasive particles or high levels of wear, aluminum gears may not offer the same level of wear resistance as materials like steel or hardened alloys. The relatively softer nature of aluminum can result in accelerated wear or damage to the gear teeth. In such cases, surface treatments, coatings, or alternative materials may be necessary to enhance wear resistance.

6. Electrical Environments: Aluminum is an electrically conductive material. In electrical environments, there is a possibility of electrical arcing or the formation of galvanic couples with dissimilar metals. Proper insulation, grounding, and preventive measures should be implemented to avoid any adverse effects on gear performance or electrical systems.

It’s important to consider the specific environmental conditions and requirements of the gear application when assessing the performance of aluminum gears. In many cases, aluminum gears can perform satisfactorily in various environments with proper design, material selection, lubrication, and maintenance practices. However, for extreme or highly specialized environments, alternative materials or additional protective measures may be necessary.

In summary, the performance of aluminum gears in different environments depends on factors such as corrosion resistance, temperature effects, humidity, abrasion resistance, electrical properties, and specific application considerations. Understanding these factors and implementing appropriate measures ensures optimal performance and durability of aluminum gears in diverse environmental conditions.

aluminum gear

How do aluminum gears contribute to reducing overall system weight?

Aluminum gears play a significant role in reducing the overall weight of a system. Here’s a detailed explanation:

1. Lightweight Material: Aluminum is known for its lightweight properties. Compared to materials like steel or cast iron, aluminum has a much lower density. By using aluminum gears instead of heavier alternatives, the weight of the gear components within a system can be significantly reduced.

2. Weight Reduction Benefits: The reduction in gear weight can have a cascading effect on the entire system. As gears are often integral components in various mechanical systems, such as automotive transmissions or industrial machinery, their weight reduction directly contributes to the overall weight reduction of the system. This weight reduction can lead to several benefits, including improved fuel efficiency (in vehicles), increased payload capacity, enhanced performance, and easier handling or installation.

3. Structural Efficiency: Aluminum gears offer a high strength-to-weight ratio. Despite their lightweight nature, aluminum alloys can provide sufficient strength and durability to withstand the operational loads and stresses encountered in various applications. This structural efficiency allows for the design and implementation of lighter gear systems without compromising performance or reliability.

4. System-Level Weight Optimization: The weight reduction achieved by using aluminum gears enables system designers to explore additional weight-saving measures. With lighter gears, other components within the system, such as shafts, bearings, or housings, can also be designed with lighter materials or reduced dimensions. This holistic approach to weight optimization across the entire system can result in significant overall weight reduction.

5. Aerospace and Automotive Applications: The weight reduction benefits of aluminum gears are particularly valuable in industries where weight plays a critical role, such as aerospace and automotive sectors. In aerospace applications, reducing the weight of aircraft components contributes to improved fuel efficiency, extended range, increased payload capacity, and enhanced maneuverability. Similarly, in the automotive industry, lightweight gear systems can contribute to fuel economy improvements, reduced emissions, and better vehicle performance.

6. Material Substitution: Aluminum gears can serve as substitutes for heavier gears made from materials like steel or cast iron. By replacing these heavier gears with aluminum alternatives, the weight reduction is achieved without sacrificing functionality or compromising the intended purpose of the gear system.

7. Design Flexibility: Aluminum is a highly formable material, allowing for versatile and complex gear designs. The flexibility in design enables engineers to optimize gear geometries and tooth profiles to maximize efficiency and minimize weight. This design flexibility, coupled with the lightweight properties of aluminum, contributes to effective weight reduction strategies.

8. Manufacturing Efficiency: Aluminum gears can be manufactured using various processes, such as casting, extrusion, or machining. These processes offer cost-effective production methods, reducing material waste and energy consumption. The manufacturing efficiency associated with aluminum gears further supports overall weight reduction initiatives.

In conclusion, aluminum gears contribute to reducing the overall weight of a system through their lightweight nature, high strength-to-weight ratio, structural efficiency, system-level weight optimization, applicability in weight-sensitive industries, material substitution, design flexibility, and manufacturing efficiency. By utilizing aluminum gears, system designers can achieve significant weight savings while maintaining the required functionality and performance.

aluminum gear

Are there different types of aluminum alloys used for making gears?

Yes, there are different types of aluminum alloys used for making gears. Here’s a detailed explanation:

1. Aluminum-Copper Alloys: Aluminum-copper alloys, such as the 2000 series (e.g., 2014, 2024), are commonly used for gears. These alloys offer good strength and excellent fatigue resistance, making them suitable for gears subjected to moderate to high loads. They also exhibit good machinability, which facilitates gear manufacturing processes.

2. Aluminum-Silicon Alloys: Aluminum-silicon alloys, particularly the 4000 series (e.g., 4032), are used for gears requiring high wear resistance and low friction. These alloys have good mechanical properties and can withstand high contact pressures. They are often used in applications where gears operate in harsh conditions or require self-lubrication.

3. Aluminum-Zinc Alloys: Aluminum-zinc alloys, such as the 7000 series (e.g., 7075), are known for their high strength and excellent fatigue resistance. These alloys are commonly used in aerospace applications where lightweight gears with exceptional strength are required. However, they may have lower machinability compared to other aluminum alloys.

4. Aluminum-Magnesium Alloys: Aluminum-magnesium alloys, including the 5000 series (e.g., 5052, 5083), offer a good combination of strength, corrosion resistance, and weldability. These alloys are suitable for gears exposed to marine or corrosive environments. They are also commonly used in general machinery and equipment manufacturing.

5. Aluminum-Zinc-Magnesium Alloys: Aluminum-zinc-magnesium alloys, such as the 7000 series (e.g., 7049), provide an excellent balance of strength, corrosion resistance, and lightweight properties. These alloys are used in high-performance gears, particularly in industries like aerospace and motorsports.

6. Other Alloy Combinations: There are also specialized aluminum alloys tailored for specific gear applications. For example, aluminum-tin alloys are used for gears requiring excellent wear resistance and dimensional stability. These alloys are often employed in automotive applications.

It’s important to note that the selection of the aluminum alloy depends on the specific requirements of the gear application, including load conditions, wear resistance, corrosion resistance, temperature, and manufacturing considerations. Each alloy has its own unique properties and advantages, allowing gear manufacturers to choose the most suitable alloy for their specific needs.

In summary, different types of aluminum alloys, such as aluminum-copper, aluminum-silicon, aluminum-zinc, aluminum-magnesium, aluminum-zinc-magnesium, and specialized alloy combinations, are used for making gears. The choice of alloy depends on factors such as strength requirements, wear resistance, corrosion resistance, and specific application considerations.

China supplier AISI 304 Stainless Steel/Aluminum/Brass 5 Axis Machining/Processing Flywheel Spur Gear with Good qualityChina supplier AISI 304 Stainless Steel/Aluminum/Brass 5 Axis Machining/Processing Flywheel Spur Gear with Good quality
editor by CX 2023-11-07