Product Description

High Preciison Customized Small Aluminum Spur Gear

1. 100% inspection before delivery;
2. High performance of CVD/PVD coating, with super hard and smooth surface;
3. ISO9001:2015 quality system control;
4. Customized size and spec /OEM.ODM available ;
5. Precise dimension, high accuracy;
6. 15+ years experienced  engineers team and well trained sales team to support every project.;

 

Product Name
 

High Preciison Customized Small Aluminum Spur Gear                 

Material
 

metal

Color
 

natural

Standard
 

DIN GB ISO JIS BA ANSI

Grade
 

SUS201, SUS304, SUS316, A2-70, A2-80, A4-80, 4.8 6.8 8.8 10.9 12.9

Brade
 

Rock

Thread
 

coarse, fine

Used
 

building industry machinery

Business type Manufacturer
Application Motocycle, Bicycle, Truck, Equipment, Electric, Machinery, Furniture and so on
Tolerance 0.005 ~ 0.01mm
Finish Sandblast, polish, anodize, zinc plating, nickle plating, powder coating , burnish and so on
Processing CNC machining, milling, turning, laser cutting, drilling, grinding, bending, stamping, welding and so on
Drawing format  JPEG, PDF, DWG, DXF, IGS, STEP

The products shown here is only to present the scope of our business activities. We can  manufacture custom parts according to your drawings or samples.

High Precision Customized Small Aluminum Spur Gear
High Precision Customized Small Aluminum Spur Gear
High Precision Customized Small Aluminum Spur Gear

 

 

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Gear
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

aluminum gear

What is the impact of temperature variations on aluminum gears?

The impact of temperature variations on aluminum gears can be significant. Here’s a detailed explanation:

1. Thermal Expansion: Aluminum gears, like most metals, expand with increasing temperature and contract with decreasing temperature. This thermal expansion can affect the dimensional stability of the gears, leading to changes in gear meshing, backlash, and overall gear performance. It is crucial to consider the coefficient of thermal expansion of the specific aluminum alloy used and account for it in gear design and assembly.

2. Mechanical Properties: Temperature variations can influence the mechanical properties of aluminum gears. At higher temperatures, aluminum alloys may experience a reduction in strength, stiffness, and hardness. This can affect the load-carrying capacity and durability of the gears, especially in applications involving high operating temperatures. Additionally, prolonged exposure to elevated temperatures can cause thermal degradation and a loss of mechanical properties over time.

3. Lubrication: Temperature changes can impact the lubrication properties of the gear system. Lubricants behave differently at different temperatures, and extreme temperature variations can affect their viscosity, film thickness, and lubricating effectiveness. Insufficient lubrication due to temperature-related changes can lead to increased friction, wear, and potential gear failures. Proper selection of lubricants and consideration of temperature effects are essential.

4. Thermal Cycling: Cycling between high and low temperatures can induce thermal stresses in aluminum gears. These thermal stresses, combined with mechanical loading, can contribute to fatigue failure, cracking, or distortion of the gears over time. It is important to evaluate the thermal cycling conditions and design the gears to withstand the associated thermal stresses to ensure long-term reliability.

5. Heat Dissipation: Aluminum has good thermal conductivity, which allows it to dissipate heat effectively. In applications where the gears generate significant heat, such as high-speed or heavy-load operations, aluminum gears can help dissipate heat and prevent overheating. However, excessive temperatures can still cause thermal stress and affect the overall performance and lifespan of the gears.

6. Operating Envelope: Temperature variations define the operating envelope of aluminum gears. Each aluminum alloy has a specific temperature range within which it can perform optimally. Operating beyond this temperature range can lead to reduced gear life, accelerated wear, loss of dimensional stability, or even catastrophic failures. Understanding the temperature limits of the selected aluminum alloy is crucial for determining its suitability in a given application.

It is important to note that the impact of temperature variations on aluminum gears can be mitigated through proper design, material selection, lubrication, and thermal management measures. Thermal analysis, including finite element analysis (FEA), can be employed to assess the thermal behavior of the gears and optimize their performance under different temperature conditions.

In summary, temperature variations can significantly impact aluminum gears through thermal expansion, changes in mechanical properties, lubrication effects, thermal cycling, heat dissipation, and the overall operating envelope. Understanding these effects and implementing appropriate measures ensures that the aluminum gears can withstand temperature variations and operate reliably in their intended applications.

aluminum gear

What are the safety considerations when using aluminum gears?

When using aluminum gears, several safety considerations should be taken into account. Here’s a detailed explanation:

1. Load Capacity: It is essential to ensure that the selected aluminum gear is capable of handling the intended load and torque requirements. Exceeding the gear’s load capacity can lead to premature failure, gear tooth breakage, or gear system malfunction, compromising safety. Proper gear selection and design based on load calculations are crucial to maintain safe operation.

2. Material Compatibility: Aluminum gears should be compatible with other components within the system. Consideration must be given to the materials used for mating gears, shafts, bearings, and housing to avoid galvanic corrosion or excessive wear. Compatibility between materials ensures the integrity and reliability of the gear system.

3. Mechanical Interference: During gear operation, it is important to ensure that there is no mechanical interference between aluminum gears and other system components. Adequate clearance and proper alignment should be maintained to prevent contact or binding, which can lead to gear damage, increased wear, or system failure.

4. Lubrication and Maintenance: Proper lubrication is critical for the safe and efficient operation of aluminum gears. Inadequate lubrication can result in increased friction, heat generation, wear, and potential gear failure. Regular maintenance, including lubricant inspection and replacement, should be performed to ensure optimal gear performance and longevity.

5. Noise and Vibration: Aluminum gears can generate noise and vibration during operation. Excessive noise and vibration can not only affect the performance and efficiency of the gear system but also potentially cause discomfort or harm to operators. Proper noise and vibration mitigation measures, such as using noise-dampening materials or implementing vibration isolation techniques, should be considered to maintain a safe working environment.

6. Temperature Considerations: Aluminum gears have limitations regarding operating temperatures. High temperatures can cause thermal expansion, leading to dimensional changes and potential gear misalignment. On the other hand, extremely low temperatures can affect the material’s toughness and increase the risk of gear failure. It is important to operate aluminum gears within their recommended temperature range to ensure safe and reliable performance.

7. System Integration: When integrating aluminum gears into a larger system, proper engineering practices and safety standards should be followed. This includes considering factors such as gear positioning, guarding, and emergency shutdown mechanisms to prevent accidents or injuries caused by inadvertent contact with rotating gears.

8. Operator Training: Operators and maintenance personnel should receive adequate training and instructions on the safe operation, handling, and maintenance of aluminum gears. This includes understanding gear system limitations, safety procedures, and proper use of personal protective equipment (PPE) when working with gears or gear systems.

By addressing these safety considerations, manufacturers and users can ensure the safe and reliable operation of aluminum gears, minimizing the risk of accidents, equipment damage, and personal injury.

aluminum gear

Are there different types of aluminum alloys used for making gears?

Yes, there are different types of aluminum alloys used for making gears. Here’s a detailed explanation:

1. Aluminum-Copper Alloys: Aluminum-copper alloys, such as the 2000 series (e.g., 2014, 2024), are commonly used for gears. These alloys offer good strength and excellent fatigue resistance, making them suitable for gears subjected to moderate to high loads. They also exhibit good machinability, which facilitates gear manufacturing processes.

2. Aluminum-Silicon Alloys: Aluminum-silicon alloys, particularly the 4000 series (e.g., 4032), are used for gears requiring high wear resistance and low friction. These alloys have good mechanical properties and can withstand high contact pressures. They are often used in applications where gears operate in harsh conditions or require self-lubrication.

3. Aluminum-Zinc Alloys: Aluminum-zinc alloys, such as the 7000 series (e.g., 7075), are known for their high strength and excellent fatigue resistance. These alloys are commonly used in aerospace applications where lightweight gears with exceptional strength are required. However, they may have lower machinability compared to other aluminum alloys.

4. Aluminum-Magnesium Alloys: Aluminum-magnesium alloys, including the 5000 series (e.g., 5052, 5083), offer a good combination of strength, corrosion resistance, and weldability. These alloys are suitable for gears exposed to marine or corrosive environments. They are also commonly used in general machinery and equipment manufacturing.

5. Aluminum-Zinc-Magnesium Alloys: Aluminum-zinc-magnesium alloys, such as the 7000 series (e.g., 7049), provide an excellent balance of strength, corrosion resistance, and lightweight properties. These alloys are used in high-performance gears, particularly in industries like aerospace and motorsports.

6. Other Alloy Combinations: There are also specialized aluminum alloys tailored for specific gear applications. For example, aluminum-tin alloys are used for gears requiring excellent wear resistance and dimensional stability. These alloys are often employed in automotive applications.

It’s important to note that the selection of the aluminum alloy depends on the specific requirements of the gear application, including load conditions, wear resistance, corrosion resistance, temperature, and manufacturing considerations. Each alloy has its own unique properties and advantages, allowing gear manufacturers to choose the most suitable alloy for their specific needs.

In summary, different types of aluminum alloys, such as aluminum-copper, aluminum-silicon, aluminum-zinc, aluminum-magnesium, aluminum-zinc-magnesium, and specialized alloy combinations, are used for making gears. The choice of alloy depends on factors such as strength requirements, wear resistance, corrosion resistance, and specific application considerations.

China Best Sales High Precision Customized Small Aluminum Spur Gear gear boxChina Best Sales High Precision Customized Small Aluminum Spur Gear gear box
editor by CX 2023-12-04