Product Description

High Preciison Customized Small Aluminum Spur Gear

1. 100% inspection before delivery;
2. High performance of CVD/PVD coating, with super hard and smooth surface;
3. ISO9001:2015 quality system control;
4. Customized size and spec /OEM.ODM available ;
5. Precise dimension, high accuracy;
6. 15+ years experienced  engineers team and well trained sales team to support every project.;


Product Name

High Preciison Customized Small Aluminum Spur Gear                 








SUS201, SUS304, SUS316, A2-70, A2-80, A4-80, 4.8 6.8 8.8 10.9 12.9




coarse, fine


building industry machinery

Business type Manufacturer
Application Motocycle, Bicycle, Truck, Equipment, Electric, Machinery, Furniture and so on
Tolerance 0.005 ~ 0.01mm
Finish Sandblast, polish, anodize, zinc plating, nickle plating, powder coating , burnish and so on
Processing CNC machining, milling, turning, laser cutting, drilling, grinding, bending, stamping, welding and so on
Drawing format  JPEG, PDF, DWG, DXF, IGS, STEP

The products shown here is only to present the scope of our business activities. We can  manufacture custom parts according to your drawings or samples.

High Precision Customized Small Aluminum Spur Gear
High Precision Customized Small Aluminum Spur Gear
High Precision Customized Small Aluminum Spur Gear



/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
US$ 100/Piece
1 Piece(Min.Order)


Order Sample



Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.

about shipping cost and estimated delivery time.
Payment Method:


Initial Payment

Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

aluminum gear

Can aluminum gears withstand high torque and load conditions?

Aluminum gears have certain limitations when it comes to high torque and load conditions. Here’s a detailed explanation:

1. Strength: Aluminum is generally not as strong as materials like steel or cast iron. While aluminum alloys used for gears can offer good strength, they may not be as robust as traditional materials in terms of absolute strength. Under extremely high torque or heavy load conditions, there is a risk of deformation or failure of aluminum gears.

2. Design Considerations: To ensure that aluminum gears can withstand high torque and load conditions, proper design considerations are crucial. Factors such as gear geometry, tooth profile, tooth thickness, and material selection need to be carefully evaluated and optimized. Reinforcements, such as ribbing or thicker sections, can be incorporated into the gear design to enhance strength and load-bearing capacity.

3. Heat Dissipation: Aluminum has good thermal conductivity, which helps dissipate heat generated during high torque or heavy load operations. Heat can affect the performance and integrity of gears, leading to increased wear or potential failure. Proper lubrication and cooling mechanisms should be implemented to manage heat buildup and ensure optimal gear performance.

4. Surface Treatments: Surface treatments like hard anodizing or coatings can be applied to aluminum gears to improve their hardness, wear resistance, and surface durability. These treatments help mitigate the effects of high torque and load conditions, reducing the risk of surface damage or wear.

5. Application Considerations: The suitability of aluminum gears for high torque and load conditions depends on the specific application requirements. In some cases, aluminum gears may be well-suited for moderate torque and load applications, such as in certain automotive or machinery applications. However, in heavy-duty or extreme conditions, alternative materials like steel or cast iron may be more appropriate.

It’s important to note that engineering judgment, proper design practices, and thorough evaluation of the specific operating conditions are essential in determining whether aluminum gears can withstand high torque and load conditions. In critical applications where high torque or heavy loads are expected, gear manufacturers may choose materials with higher strength and load-bearing capabilities.

In summary, while aluminum gears can be used in certain high torque and load conditions, their suitability depends on factors such as gear design, material selection, heat dissipation, surface treatments, and application requirements. Careful consideration and engineering expertise are necessary to ensure safe and reliable operation of aluminum gears under these conditions.

aluminum gear

What are the safety considerations when using aluminum gears?

When using aluminum gears, several safety considerations should be taken into account. Here’s a detailed explanation:

1. Load Capacity: It is essential to ensure that the selected aluminum gear is capable of handling the intended load and torque requirements. Exceeding the gear’s load capacity can lead to premature failure, gear tooth breakage, or gear system malfunction, compromising safety. Proper gear selection and design based on load calculations are crucial to maintain safe operation.

2. Material Compatibility: Aluminum gears should be compatible with other components within the system. Consideration must be given to the materials used for mating gears, shafts, bearings, and housing to avoid galvanic corrosion or excessive wear. Compatibility between materials ensures the integrity and reliability of the gear system.

3. Mechanical Interference: During gear operation, it is important to ensure that there is no mechanical interference between aluminum gears and other system components. Adequate clearance and proper alignment should be maintained to prevent contact or binding, which can lead to gear damage, increased wear, or system failure.

4. Lubrication and Maintenance: Proper lubrication is critical for the safe and efficient operation of aluminum gears. Inadequate lubrication can result in increased friction, heat generation, wear, and potential gear failure. Regular maintenance, including lubricant inspection and replacement, should be performed to ensure optimal gear performance and longevity.

5. Noise and Vibration: Aluminum gears can generate noise and vibration during operation. Excessive noise and vibration can not only affect the performance and efficiency of the gear system but also potentially cause discomfort or harm to operators. Proper noise and vibration mitigation measures, such as using noise-dampening materials or implementing vibration isolation techniques, should be considered to maintain a safe working environment.

6. Temperature Considerations: Aluminum gears have limitations regarding operating temperatures. High temperatures can cause thermal expansion, leading to dimensional changes and potential gear misalignment. On the other hand, extremely low temperatures can affect the material’s toughness and increase the risk of gear failure. It is important to operate aluminum gears within their recommended temperature range to ensure safe and reliable performance.

7. System Integration: When integrating aluminum gears into a larger system, proper engineering practices and safety standards should be followed. This includes considering factors such as gear positioning, guarding, and emergency shutdown mechanisms to prevent accidents or injuries caused by inadvertent contact with rotating gears.

8. Operator Training: Operators and maintenance personnel should receive adequate training and instructions on the safe operation, handling, and maintenance of aluminum gears. This includes understanding gear system limitations, safety procedures, and proper use of personal protective equipment (PPE) when working with gears or gear systems.

By addressing these safety considerations, manufacturers and users can ensure the safe and reliable operation of aluminum gears, minimizing the risk of accidents, equipment damage, and personal injury.

aluminum gear

What are the benefits of using aluminum gears over traditional materials?

Using aluminum gears over traditional materials offers several benefits. Here’s a detailed explanation:

1. Weight Reduction: Aluminum gears are significantly lighter compared to gears made from traditional materials like steel or cast iron. The lower density of aluminum results in gears that weigh less for the same size and shape. This weight reduction offers advantages such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Improved Energy Efficiency: The lightweight nature of aluminum gears contributes to improved energy efficiency in machinery. With lighter gears, less energy is required to rotate or move the gears, resulting in reduced power consumption. This is particularly beneficial in applications where energy efficiency is a priority, such as automotive or aerospace systems.

3. Reduced Inertia: The lower weight of aluminum gears reduces the inertia of rotating parts. This enables quicker acceleration and deceleration, leading to improved responsiveness and overall performance of the machinery. Reduced inertia also helps reduce wear and tear on other components, enhancing the durability of the system.

4. Corrosion Resistance: Aluminum gears offer good corrosion resistance, particularly when compared to traditional materials like steel. This makes them suitable for applications in environments where exposure to moisture, chemicals, or corrosive substances is common. Industries such as marine, automotive, and outdoor equipment benefit from the corrosion-resistant properties of aluminum gears.

5. Design Flexibility: Aluminum is a highly malleable material, allowing for intricate and complex gear designs. It can be easily shaped and machined into various gear profiles, including custom or specialized designs. This design flexibility enables engineers to optimize gear performance and adapt to specific application requirements.

6. Noise Reduction: Aluminum gears exhibit better noise-dampening characteristics compared to some traditional materials. The inherent damping properties of aluminum help reduce gear noise and vibrations, leading to quieter operation in machinery and equipment.

7. Cost Efficiency: Aluminum gears can offer cost advantages over traditional materials in certain situations. While the initial material cost of aluminum may be higher, the overall cost savings can be realized through factors such as reduced energy consumption, simplified handling and installation, and lower maintenance requirements.

8. Recyclability: Aluminum is a highly recyclable material. Using aluminum gears promotes sustainability and environmental responsibility. Recycling aluminum gears at the end of their lifecycle helps conserve resources and reduce waste.

In summary, using aluminum gears over traditional materials provides benefits such as weight reduction, improved energy efficiency, reduced inertia, corrosion resistance, design flexibility, noise reduction, cost efficiency, and recyclability. These advantages make aluminum gears a favorable choice in various industries and applications.

China supplier High Precision Customized Small Aluminum Spur Gear worm gear winchChina supplier High Precision Customized Small Aluminum Spur Gear worm gear winch
editor by CX 2024-03-26