Product Description

RC Aluminum Housing Light Weight Helical Gear Speed Reduction

Features

1. Modular design, dismountable frame foot, optional different frame sizes, and flanges.
2. Aluminum housing, compact structures, lightweight.
3. Carburizing and grinding hardened gears, sturdy and durable.
4. Multiple mounting positions.
5. Compact structure, low noise.

Product Photos

 

Related Product

                        Helical Gear Motor                                                      NMRV Worm Gearbox                                                   WP Worm Reducer

               Industrial Helical Gearbox                                                Industrial Planetary Gearbox                                    Shaft Mounted Gearbox 
 

Product Description

 

ANG CHINAMFG Helical Gearbox
Model RC (Foot-mounted): RC01, RC02, RC03, RC04
RCF (B5 Flange-mounted): RCF01, RCF02, RCF03, RCF04
RCZ (B14 Flange-mounted): RCZ01, RCZ02, RCZ03, RCZ04
Input power 0.12kW ~ 4kW
Input speed 750rpm ~ 3000rpm
Reduction ratio 1/3.66 ~ 1/54
Torque 120N.m ~ 500N.m
Input type Hollow Shaft with IEC Motor Flange
Solid Shaft Input
Motor
Input motor IEC-normalized Motors, Brake Motors
Explosion-proof Motors
Inverter Motors, Servo Motors
Output type Solid Shaft with B5 Output Flange
Solid Shaft with B14 Output Flange
Material of housing Aluminum Alloys
Precision of gear Accurate grinding, class 6
Heat treatment Carburizing and quenching
Gears Hardened Helical Gears

 

GEARBOX SELECTING TABLES 
RC01..       n1=1400r/min       120Nm  
                   
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 120 2600 53.33  160/3          
31 120 2600 45.89  413/9          
35 120 2600 40.10  3248/81          
39 120 2560 35.47  532/15          
49 120 2380 28.50  770/27          
59 120 2230 23.56  212/9          
71 120 2100 19.83  119/6          
78 90 2030 17.86  1357/76          
96 120 1900 14.62  658/45          
101 90 1860 13.80* 69/5          
118 120 1770 11.90  2464/207          
143 120 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/190          
302 70 1290 4.63  88/19          
366 70 1210 3.82  943/247          
                   
                   
RC02..       n1=1400r/min       200Nm  
                   
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 200 4500 54.00* 54/1          
30 200 4500 46.46* 3717/80          
34 200 4500 40.60* 203/5          
39 200 4270 35.91* 3591/100          
48 200 3970 28.88* 231/8          
59 200 3730 23.85* 477/20          
70 200 3520 20.08* 3213/160          
82 140 3330 17.10  3009/176          
95 200 3180 14.81* 2961/200          
106 140 3060 13.21  2907/220          
116 200 2970 12.05  1386/115          
141 200 2780 9.93  2583/260          
159 120 2670 8.78  2703/308          
189 120 2520 7.39  2601/352          
257 100 2280 5.45  2397/440          
316 100 2120 4.43  102/23          
383 80 1990 3.66  2091/572          
                   
                   
RC03..       n1=1400r/min         300Nm
                   
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 300 6000 58.09  639/11          
28 300 6000 50.02  2201/44          
32 300 6000 43.75  4331/99          
36 300 6000 38.73  426/11          
40 300 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5571 21.78  1917/88          
81 280 4660 17.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 10.28  3053/297          
177 180 3590 7.93  1269/160          
222 180 3320 6.31  2397/380          
255 150 3170 5.48  329/60          
311 150 2970 4.50  1081/240          
374 150 2790 3.74  2571/540          
                   
                   
RC04..       n1=1400r/min       500Nm  
                   
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 500 8000 58.09  639/11          
28 500 8000 50.02  2201/44          
32 500 8000 43.75  4331/99          
36 500 8000 38.73  426/11          
40 500 7950 34.62  4189/121          
49 500 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
81 480 6310 17.33  3621/209          
93 460 6571 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 7.93  1269/160          
222 260 4510 6.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 200 3780 3.74  2571/540          

FAQ

Q: Can you make the gearbox with customization?
A: Yes, we can customize as requested, like shaft size, flange, color, etc.

Q: Do you provide samples?
A: Yes. The sample is available for testing.

Q: What’s your lead time?
A: Standard products need 5-30 days, a bit longer for customized products.

Q: Do you provide technical support?
A: Yes. Our company has a design and development team, we can provide technical support if you
need.

Q: How to ship to us?
A: It is available by air, sea, or train.

Q: How to pay the money?
A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.

Q: How can I know if the product is suitable for me?
A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

Q: Can I come to your company to visit?
A: Yes, you are welcome to visit us at any time.

Q: How shall we contact you?
A: You can send an inquiry directly, and we will respond within 24 hours.
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Samples:
US$ 300/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

aluminum gear

What is the impact of temperature variations on aluminum gears?

The impact of temperature variations on aluminum gears can be significant. Here’s a detailed explanation:

1. Thermal Expansion: Aluminum gears, like most metals, expand with increasing temperature and contract with decreasing temperature. This thermal expansion can affect the dimensional stability of the gears, leading to changes in gear meshing, backlash, and overall gear performance. It is crucial to consider the coefficient of thermal expansion of the specific aluminum alloy used and account for it in gear design and assembly.

2. Mechanical Properties: Temperature variations can influence the mechanical properties of aluminum gears. At higher temperatures, aluminum alloys may experience a reduction in strength, stiffness, and hardness. This can affect the load-carrying capacity and durability of the gears, especially in applications involving high operating temperatures. Additionally, prolonged exposure to elevated temperatures can cause thermal degradation and a loss of mechanical properties over time.

3. Lubrication: Temperature changes can impact the lubrication properties of the gear system. Lubricants behave differently at different temperatures, and extreme temperature variations can affect their viscosity, film thickness, and lubricating effectiveness. Insufficient lubrication due to temperature-related changes can lead to increased friction, wear, and potential gear failures. Proper selection of lubricants and consideration of temperature effects are essential.

4. Thermal Cycling: Cycling between high and low temperatures can induce thermal stresses in aluminum gears. These thermal stresses, combined with mechanical loading, can contribute to fatigue failure, cracking, or distortion of the gears over time. It is important to evaluate the thermal cycling conditions and design the gears to withstand the associated thermal stresses to ensure long-term reliability.

5. Heat Dissipation: Aluminum has good thermal conductivity, which allows it to dissipate heat effectively. In applications where the gears generate significant heat, such as high-speed or heavy-load operations, aluminum gears can help dissipate heat and prevent overheating. However, excessive temperatures can still cause thermal stress and affect the overall performance and lifespan of the gears.

6. Operating Envelope: Temperature variations define the operating envelope of aluminum gears. Each aluminum alloy has a specific temperature range within which it can perform optimally. Operating beyond this temperature range can lead to reduced gear life, accelerated wear, loss of dimensional stability, or even catastrophic failures. Understanding the temperature limits of the selected aluminum alloy is crucial for determining its suitability in a given application.

It is important to note that the impact of temperature variations on aluminum gears can be mitigated through proper design, material selection, lubrication, and thermal management measures. Thermal analysis, including finite element analysis (FEA), can be employed to assess the thermal behavior of the gears and optimize their performance under different temperature conditions.

In summary, temperature variations can significantly impact aluminum gears through thermal expansion, changes in mechanical properties, lubrication effects, thermal cycling, heat dissipation, and the overall operating envelope. Understanding these effects and implementing appropriate measures ensures that the aluminum gears can withstand temperature variations and operate reliably in their intended applications.

aluminum gear

How do aluminum gears contribute to reducing overall system weight?

Aluminum gears play a significant role in reducing the overall weight of a system. Here’s a detailed explanation:

1. Lightweight Material: Aluminum is known for its lightweight properties. Compared to materials like steel or cast iron, aluminum has a much lower density. By using aluminum gears instead of heavier alternatives, the weight of the gear components within a system can be significantly reduced.

2. Weight Reduction Benefits: The reduction in gear weight can have a cascading effect on the entire system. As gears are often integral components in various mechanical systems, such as automotive transmissions or industrial machinery, their weight reduction directly contributes to the overall weight reduction of the system. This weight reduction can lead to several benefits, including improved fuel efficiency (in vehicles), increased payload capacity, enhanced performance, and easier handling or installation.

3. Structural Efficiency: Aluminum gears offer a high strength-to-weight ratio. Despite their lightweight nature, aluminum alloys can provide sufficient strength and durability to withstand the operational loads and stresses encountered in various applications. This structural efficiency allows for the design and implementation of lighter gear systems without compromising performance or reliability.

4. System-Level Weight Optimization: The weight reduction achieved by using aluminum gears enables system designers to explore additional weight-saving measures. With lighter gears, other components within the system, such as shafts, bearings, or housings, can also be designed with lighter materials or reduced dimensions. This holistic approach to weight optimization across the entire system can result in significant overall weight reduction.

5. Aerospace and Automotive Applications: The weight reduction benefits of aluminum gears are particularly valuable in industries where weight plays a critical role, such as aerospace and automotive sectors. In aerospace applications, reducing the weight of aircraft components contributes to improved fuel efficiency, extended range, increased payload capacity, and enhanced maneuverability. Similarly, in the automotive industry, lightweight gear systems can contribute to fuel economy improvements, reduced emissions, and better vehicle performance.

6. Material Substitution: Aluminum gears can serve as substitutes for heavier gears made from materials like steel or cast iron. By replacing these heavier gears with aluminum alternatives, the weight reduction is achieved without sacrificing functionality or compromising the intended purpose of the gear system.

7. Design Flexibility: Aluminum is a highly formable material, allowing for versatile and complex gear designs. The flexibility in design enables engineers to optimize gear geometries and tooth profiles to maximize efficiency and minimize weight. This design flexibility, coupled with the lightweight properties of aluminum, contributes to effective weight reduction strategies.

8. Manufacturing Efficiency: Aluminum gears can be manufactured using various processes, such as casting, extrusion, or machining. These processes offer cost-effective production methods, reducing material waste and energy consumption. The manufacturing efficiency associated with aluminum gears further supports overall weight reduction initiatives.

In conclusion, aluminum gears contribute to reducing the overall weight of a system through their lightweight nature, high strength-to-weight ratio, structural efficiency, system-level weight optimization, applicability in weight-sensitive industries, material substitution, design flexibility, and manufacturing efficiency. By utilizing aluminum gears, system designers can achieve significant weight savings while maintaining the required functionality and performance.

aluminum gear

What are aluminum gears and how are they used?

Aluminum gears are gears made from aluminum, a lightweight and versatile metal. Here’s a detailed explanation of aluminum gears and their uses:

1. Material Properties: Aluminum gears are typically made from aluminum alloys, which offer several advantages. Aluminum is lightweight, with a density significantly lower than that of steel or other metals. It also has good corrosion resistance, excellent thermal conductivity, and is easy to machine, making it suitable for various applications.

2. Applications: Aluminum gears find application in a range of industries and systems, including:

  • Automotive: Aluminum gears are used in automotive transmissions, where their lightweight nature helps reduce the overall weight of the vehicle, contributing to improved fuel efficiency.
  • Aerospace: In aerospace applications, aluminum gears are utilized in aircraft components, such as landing gear systems and actuation mechanisms, where weight reduction is critical for fuel efficiency and performance.
  • Robotics: Aluminum gears are commonly employed in robotics for their lightweight characteristics, allowing for efficient movement and reduced power requirements.
  • Electrical and Electronics: Aluminum gears are utilized in various electrical and electronic devices, such as printers, scanners, and small appliances, where low weight and noise reduction are important.
  • Sports Equipment: Aluminum gears are found in sporting equipment, including bicycles, where weight reduction and durability are essential for enhanced performance.

3. Advantages: Aluminum gears offer several advantages:

  • Lightweight: Aluminum gears contribute to weight reduction in systems, resulting in improved energy efficiency and performance.
  • Corrosion Resistance: Aluminum alloys can exhibit good corrosion resistance, making them suitable for applications where exposure to moisture or harsh environments is a concern.
  • Low Noise: Aluminum gears can help reduce noise levels in gear systems due to their natural damping properties.
  • Heat Dissipation: Aluminum’s high thermal conductivity allows for effective heat dissipation, making it suitable for applications where temperature management is important.
  • Cost-Effective: Aluminum is relatively inexpensive compared to other metals, making aluminum gears a cost-effective option for various applications.

4. Limited Load Capacity: It’s important to note that aluminum gears have lower strength compared to steel gears, limiting their load-carrying capacity. They are typically used in applications with lighter loads and lower torque requirements.

5. Proper Lubrication: Lubrication is crucial for aluminum gears to minimize friction and wear. It’s important to use lubricants specifically designed for aluminum gears and follow appropriate maintenance practices to ensure their optimal performance and longevity.

Overall, aluminum gears provide lightweight, corrosion-resistant, and cost-effective solutions for various applications. They are commonly used in automotive, aerospace, robotics, electrical and electronics, and sports equipment industries, among others, where weight reduction, corrosion resistance, and noise reduction are key considerations.

China Custom RC01 02 03 04 Aluminum Housing Light Weight Helical Gear Speed Reduction raw gearChina Custom RC01 02 03 04 Aluminum Housing Light Weight Helical Gear Speed Reduction raw gear
editor by CX 2024-01-10