Product Description

ODM OEM Aluminum/Copper/Iron/Zinc/Stainless Steel Spiral Bevel Gear with Drilling

Gear transmission relies on the thrust between gear teeth to transmit motion and power, also known as meshing transmission. With this gradual meshing, helical gears operate much more smoothly and quietly than spur gears. Therefore, almost all automobile transmissions use helical gears.Since the teeth on the helical gear present a certain angle, the gears will be under a certain amount of  stress when they mesh. Equipment using helical gears is equipped with bearings to withstand this pressure.

Product Description

Product name Bevel Gear
Materials Available Stainless Steel, Carbon Steel, Brass,  Bronze, Iron, Aluminum Alloy,Copper,Plastic etc
Heat Treatment Quenching & Tempering, Carburizing & Quenching, High-frequency Hardening, Carbonitriding……
Surface Treatment Carburizing and Quenching,Tempering ,Tooth suface high quenching Hardening,Tempering
BORE Finished bore, Pilot Bore, Special request
Processing Method Molding, Shaving, Hobbing, Drilling, Tapping, Reaming, Manual Chamfering, Grinding etc
Pressure Angle 20 Degree
Hardness 55- 60HRC
Size Customer Drawings & ISO standard
Package Wooden Case/Container and pallet, or made-to-order
Certificate ISO9001:2008
Machining Process Blanking, lathe, semi finishing, heat treatment, decarbonization, rough grinding, semi finishing, fine grinding, finished product inspection
Applications Electric machinery, metallurgical machinery, environmental protection machinery, electronic and electrical appliances, road construction machinery, chemical machinery, food machinery, light industrial machinery, mining machinery, transportation machinery, construction machinery, building materials machinery, cement machinery, rubber machinery, water conservancy machinery and petroleum machinery

Company Profile

Packaging & Shipping

FAQ

Main Markets? North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order? * You send us drawing or sample
* We carry through project assessment
* We give you our design for your confirmation
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

If you are interested in our products, please tell us which materials, type, width, length u want.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car, Printing
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Bevel Wheel
Material: Aluminum
Samples:
US$ 15/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

aluminum gear

How do you choose the right type of aluminum alloy for specific applications?

Choosing the right type of aluminum alloy for specific applications involves considering various factors. Here’s a detailed explanation:

1. Mechanical Properties: Assess the required mechanical properties for the application, such as strength, hardness, toughness, and wear resistance. Different aluminum alloys offer varying levels of these properties. For example, 2000 series alloys are known for their high strength, while 6000 series alloys offer a good balance of strength and formability.

2. Corrosion Resistance: Evaluate the environmental conditions the aluminum alloy will be exposed to. Some alloys have better corrosion resistance, making them suitable for applications in corrosive environments. For instance, 5000 series alloys are known for their excellent corrosion resistance.

3. Formability: Consider the required formability and ease of fabrication. Certain aluminum alloys, like 1000 and 3000 series, have excellent formability, making them suitable for applications that involve complex shapes or intricate designs.

4. Heat Treatability: Determine if heat treatment is necessary to achieve the desired mechanical properties. Some aluminum alloys, such as 7000 series, are heat-treatable and can be strengthened through heat treatment processes like solution heat treatment and aging.

5. Weight: Evaluate the weight requirements of the application. Aluminum alloys have lower density compared to many other metals, making them ideal for lightweight applications where weight reduction is critical, such as aerospace or automotive industries.

6. Cost: Consider the budget and cost constraints of the project. Different aluminum alloys have varying costs based on factors such as availability, production processes, and alloying elements. Balancing the desired properties with the project’s budget is important.

7. Compatibility: Ensure that the chosen aluminum alloy is compatible with other materials or components in the application. Compatibility includes factors such as galvanic corrosion potential, thermal expansion coefficients, and joining methods.

8. Industry Standards: Check if there are specific industry standards or regulations that dictate the use of particular aluminum alloys for certain applications. Industries such as aerospace, automotive, and marine often have specific alloy requirements based on performance and safety standards.

9. Consult Experts: When in doubt, consult with material engineers, metallurgists, or industry experts who have expertise in aluminum alloys. They can provide valuable insights and guidance based on their knowledge and experience.

Considering these factors in combination with the specific requirements and constraints of the application will help in choosing the right type of aluminum alloy. It’s important to note that selecting the most suitable alloy may involve trade-offs between different properties and considerations.

In summary, selecting the right type of aluminum alloy for specific applications involves assessing mechanical properties, corrosion resistance, formability, heat treatability, weight requirements, cost, compatibility, industry standards, and seeking expert advice. Taking a comprehensive approach ensures that the chosen aluminum alloy meets the performance, durability, and cost objectives of the application.

aluminum gear

Can aluminum gears be used in aerospace and aviation applications?

Aluminum gears can indeed be used in aerospace and aviation applications. Here’s a detailed explanation:

1. Weight Reduction: Aluminum is known for its lightweight properties. In aerospace and aviation industries, weight reduction is a critical factor for improving fuel efficiency, increasing payload capacity, and enhancing overall performance. Aluminum gears offer a significant advantage over heavier materials like steel, helping to achieve weight savings without compromising strength and functionality.

2. Corrosion Resistance: Aluminum alloys are inherently corrosion-resistant, especially when compared to ferrous materials like steel. In aerospace and aviation environments, where exposure to moisture, humidity, and harsh chemicals is common, corrosion resistance is vital. Aluminum gears can withstand these corrosive conditions, reducing the risk of gear degradation and ensuring long-term reliability.

3. Thermal Conductivity: Aluminum has excellent thermal conductivity, allowing for efficient heat dissipation. In aerospace and aviation applications, where gears may be subjected to high-speed rotations or heavy loads, heat generation can be a concern. Aluminum gears can effectively transfer and dissipate heat, helping to maintain optimal operating temperatures and prevent overheating-related failures.

4. Low Noise and Vibration: Aluminum gears possess inherent damping properties, which can contribute to lower noise and vibration levels. In aerospace and aviation, noise reduction is crucial for passenger comfort, crew safety, and compliance with regulatory requirements. Aluminum gears can help reduce gear-induced noise and vibration, enhancing the overall user experience.

5. Manufacturability: Aluminum is a highly formable material, enabling complex gear designs and intricate shapes. It can be fabricated through various processes such as casting, machining, or powder metallurgy, offering flexibility in manufacturing techniques. This allows for the production of custom gear geometries and optimized designs to meet specific aerospace and aviation requirements.

6. Compatibility with Composites: The aerospace and aviation industries widely use composite materials for their high strength-to-weight ratios. Aluminum gears can be designed to be compatible with composite structures, integrating seamlessly with other components in aircraft or spacecraft systems. This compatibility allows for efficient transmission of motion and power within composite assemblies.

7. Regulatory Compliance: Aluminum is a well-established material in aerospace and aviation industries, and its use in gears aligns with industry standards and regulatory requirements. The performance and reliability of aluminum gears have been extensively studied and validated, making them a trusted choice for critical applications.

In summary, aluminum gears are well-suited for aerospace and aviation applications due to their lightweight nature, corrosion resistance, thermal conductivity, low noise and vibration characteristics, manufacturability, compatibility with composites, and compliance with industry standards. These factors make aluminum gears a viable option for enhancing performance, efficiency, and safety in the aerospace and aviation sectors.

aluminum gear

What are aluminum gears and how are they used?

Aluminum gears are gears made from aluminum, a lightweight and versatile metal. Here’s a detailed explanation of aluminum gears and their uses:

1. Material Properties: Aluminum gears are typically made from aluminum alloys, which offer several advantages. Aluminum is lightweight, with a density significantly lower than that of steel or other metals. It also has good corrosion resistance, excellent thermal conductivity, and is easy to machine, making it suitable for various applications.

2. Applications: Aluminum gears find application in a range of industries and systems, including:

  • Automotive: Aluminum gears are used in automotive transmissions, where their lightweight nature helps reduce the overall weight of the vehicle, contributing to improved fuel efficiency.
  • Aerospace: In aerospace applications, aluminum gears are utilized in aircraft components, such as landing gear systems and actuation mechanisms, where weight reduction is critical for fuel efficiency and performance.
  • Robotics: Aluminum gears are commonly employed in robotics for their lightweight characteristics, allowing for efficient movement and reduced power requirements.
  • Electrical and Electronics: Aluminum gears are utilized in various electrical and electronic devices, such as printers, scanners, and small appliances, where low weight and noise reduction are important.
  • Sports Equipment: Aluminum gears are found in sporting equipment, including bicycles, where weight reduction and durability are essential for enhanced performance.

3. Advantages: Aluminum gears offer several advantages:

  • Lightweight: Aluminum gears contribute to weight reduction in systems, resulting in improved energy efficiency and performance.
  • Corrosion Resistance: Aluminum alloys can exhibit good corrosion resistance, making them suitable for applications where exposure to moisture or harsh environments is a concern.
  • Low Noise: Aluminum gears can help reduce noise levels in gear systems due to their natural damping properties.
  • Heat Dissipation: Aluminum’s high thermal conductivity allows for effective heat dissipation, making it suitable for applications where temperature management is important.
  • Cost-Effective: Aluminum is relatively inexpensive compared to other metals, making aluminum gears a cost-effective option for various applications.

4. Limited Load Capacity: It’s important to note that aluminum gears have lower strength compared to steel gears, limiting their load-carrying capacity. They are typically used in applications with lighter loads and lower torque requirements.

5. Proper Lubrication: Lubrication is crucial for aluminum gears to minimize friction and wear. It’s important to use lubricants specifically designed for aluminum gears and follow appropriate maintenance practices to ensure their optimal performance and longevity.

Overall, aluminum gears provide lightweight, corrosion-resistant, and cost-effective solutions for various applications. They are commonly used in automotive, aerospace, robotics, electrical and electronics, and sports equipment industries, among others, where weight reduction, corrosion resistance, and noise reduction are key considerations.

China high quality ODM OEM Aluminum/Copper/Iron/Zinc/Stainless Steel Spiral Bevel Gear with Great qualityChina high quality ODM OEM Aluminum/Copper/Iron/Zinc/Stainless Steel Spiral Bevel Gear with Great quality
editor by CX 2023-12-06