Product Description

Product Description

Product Name:

CNC Aluminum Anodized Gear Shift 
CNC Processing High Quality Cnc Machinery Parts Oil Drain Plug
Aluminum Magnetic Drain Oil Plug
High Quality Magnetic Drain Oil Plug
Can do several colors & can custom according to customer’s request

universal manual shift knob
package: 1 shift knob+3 different rubber screw
shift knob size: length 7cm,
ID 2.1cm, OD 5cm
caliber size:0.75cm/0.95cm/1.15cm
rubber size:8mm/10mm/12mm
color: red,blue,black,siver

Tolerance: +/-0.01 mm

Inspection: Every single product at least 5 times of inspection processes

Package: Plastic bag, Bubble bag, box, carton, wooden case, skin packing

Shipment terms: As per customized specifications

Description: High-quality, rich manufacturing experience

We have implemented a strict and complete quality control system, which ensures that each product can meet quality requirements of customers. Besides, all of our products have been strictly inspected before shipment
 

Detailed Photos

 

Company Profile

Year Established: 2006

Main Products: Motorcycle Parts, Auto Parts, Welding Processing, Hardware
Fitting, Machine Work

Main Markets: Domestic Market, North America, Eastern Asia, Western Europe

Factory Size: 1, 000-3, 000 square meters

Delivery Terms: FOB, CIF, EXW, Express Delivery

Payment Type: T/T, L/C, PayPal, Western Union, Escrow

We are professional manufacturer of auto accessories. We offer metal processing service. We have many years of experience in CNC processing and have a good reputation in this field. Our products have won praises from customers worldwide.

Our aim is to help customers realize their goals. We are making great efforts to achieve this CHINAMFG situation and sincerely welcome you to join us.
 

Equipment Quantity
CNC machining center 15( contain 5axis processing center)
CNC milling machine 2
CNC lathe 8
cutting machine 4
Three -COMERO 1
Welding machine 4
Punch 2
Blister packaging machine 1
vibratory finishing machine 2
Other machine 20

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 7 Days
Warranty: 6 Months
Type: Gear Shift Knob
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

aluminum gear

What is the impact of temperature variations on aluminum gears?

The impact of temperature variations on aluminum gears can be significant. Here’s a detailed explanation:

1. Thermal Expansion: Aluminum gears, like most metals, expand with increasing temperature and contract with decreasing temperature. This thermal expansion can affect the dimensional stability of the gears, leading to changes in gear meshing, backlash, and overall gear performance. It is crucial to consider the coefficient of thermal expansion of the specific aluminum alloy used and account for it in gear design and assembly.

2. Mechanical Properties: Temperature variations can influence the mechanical properties of aluminum gears. At higher temperatures, aluminum alloys may experience a reduction in strength, stiffness, and hardness. This can affect the load-carrying capacity and durability of the gears, especially in applications involving high operating temperatures. Additionally, prolonged exposure to elevated temperatures can cause thermal degradation and a loss of mechanical properties over time.

3. Lubrication: Temperature changes can impact the lubrication properties of the gear system. Lubricants behave differently at different temperatures, and extreme temperature variations can affect their viscosity, film thickness, and lubricating effectiveness. Insufficient lubrication due to temperature-related changes can lead to increased friction, wear, and potential gear failures. Proper selection of lubricants and consideration of temperature effects are essential.

4. Thermal Cycling: Cycling between high and low temperatures can induce thermal stresses in aluminum gears. These thermal stresses, combined with mechanical loading, can contribute to fatigue failure, cracking, or distortion of the gears over time. It is important to evaluate the thermal cycling conditions and design the gears to withstand the associated thermal stresses to ensure long-term reliability.

5. Heat Dissipation: Aluminum has good thermal conductivity, which allows it to dissipate heat effectively. In applications where the gears generate significant heat, such as high-speed or heavy-load operations, aluminum gears can help dissipate heat and prevent overheating. However, excessive temperatures can still cause thermal stress and affect the overall performance and lifespan of the gears.

6. Operating Envelope: Temperature variations define the operating envelope of aluminum gears. Each aluminum alloy has a specific temperature range within which it can perform optimally. Operating beyond this temperature range can lead to reduced gear life, accelerated wear, loss of dimensional stability, or even catastrophic failures. Understanding the temperature limits of the selected aluminum alloy is crucial for determining its suitability in a given application.

It is important to note that the impact of temperature variations on aluminum gears can be mitigated through proper design, material selection, lubrication, and thermal management measures. Thermal analysis, including finite element analysis (FEA), can be employed to assess the thermal behavior of the gears and optimize their performance under different temperature conditions.

In summary, temperature variations can significantly impact aluminum gears through thermal expansion, changes in mechanical properties, lubrication effects, thermal cycling, heat dissipation, and the overall operating envelope. Understanding these effects and implementing appropriate measures ensures that the aluminum gears can withstand temperature variations and operate reliably in their intended applications.

aluminum gear

How do aluminum gears contribute to reducing overall system weight?

Aluminum gears play a significant role in reducing the overall weight of a system. Here’s a detailed explanation:

1. Lightweight Material: Aluminum is known for its lightweight properties. Compared to materials like steel or cast iron, aluminum has a much lower density. By using aluminum gears instead of heavier alternatives, the weight of the gear components within a system can be significantly reduced.

2. Weight Reduction Benefits: The reduction in gear weight can have a cascading effect on the entire system. As gears are often integral components in various mechanical systems, such as automotive transmissions or industrial machinery, their weight reduction directly contributes to the overall weight reduction of the system. This weight reduction can lead to several benefits, including improved fuel efficiency (in vehicles), increased payload capacity, enhanced performance, and easier handling or installation.

3. Structural Efficiency: Aluminum gears offer a high strength-to-weight ratio. Despite their lightweight nature, aluminum alloys can provide sufficient strength and durability to withstand the operational loads and stresses encountered in various applications. This structural efficiency allows for the design and implementation of lighter gear systems without compromising performance or reliability.

4. System-Level Weight Optimization: The weight reduction achieved by using aluminum gears enables system designers to explore additional weight-saving measures. With lighter gears, other components within the system, such as shafts, bearings, or housings, can also be designed with lighter materials or reduced dimensions. This holistic approach to weight optimization across the entire system can result in significant overall weight reduction.

5. Aerospace and Automotive Applications: The weight reduction benefits of aluminum gears are particularly valuable in industries where weight plays a critical role, such as aerospace and automotive sectors. In aerospace applications, reducing the weight of aircraft components contributes to improved fuel efficiency, extended range, increased payload capacity, and enhanced maneuverability. Similarly, in the automotive industry, lightweight gear systems can contribute to fuel economy improvements, reduced emissions, and better vehicle performance.

6. Material Substitution: Aluminum gears can serve as substitutes for heavier gears made from materials like steel or cast iron. By replacing these heavier gears with aluminum alternatives, the weight reduction is achieved without sacrificing functionality or compromising the intended purpose of the gear system.

7. Design Flexibility: Aluminum is a highly formable material, allowing for versatile and complex gear designs. The flexibility in design enables engineers to optimize gear geometries and tooth profiles to maximize efficiency and minimize weight. This design flexibility, coupled with the lightweight properties of aluminum, contributes to effective weight reduction strategies.

8. Manufacturing Efficiency: Aluminum gears can be manufactured using various processes, such as casting, extrusion, or machining. These processes offer cost-effective production methods, reducing material waste and energy consumption. The manufacturing efficiency associated with aluminum gears further supports overall weight reduction initiatives.

In conclusion, aluminum gears contribute to reducing the overall weight of a system through their lightweight nature, high strength-to-weight ratio, structural efficiency, system-level weight optimization, applicability in weight-sensitive industries, material substitution, design flexibility, and manufacturing efficiency. By utilizing aluminum gears, system designers can achieve significant weight savings while maintaining the required functionality and performance.

aluminum gear

What are aluminum gears and how are they used?

Aluminum gears are gears made from aluminum, a lightweight and versatile metal. Here’s a detailed explanation of aluminum gears and their uses:

1. Material Properties: Aluminum gears are typically made from aluminum alloys, which offer several advantages. Aluminum is lightweight, with a density significantly lower than that of steel or other metals. It also has good corrosion resistance, excellent thermal conductivity, and is easy to machine, making it suitable for various applications.

2. Applications: Aluminum gears find application in a range of industries and systems, including:

  • Automotive: Aluminum gears are used in automotive transmissions, where their lightweight nature helps reduce the overall weight of the vehicle, contributing to improved fuel efficiency.
  • Aerospace: In aerospace applications, aluminum gears are utilized in aircraft components, such as landing gear systems and actuation mechanisms, where weight reduction is critical for fuel efficiency and performance.
  • Robotics: Aluminum gears are commonly employed in robotics for their lightweight characteristics, allowing for efficient movement and reduced power requirements.
  • Electrical and Electronics: Aluminum gears are utilized in various electrical and electronic devices, such as printers, scanners, and small appliances, where low weight and noise reduction are important.
  • Sports Equipment: Aluminum gears are found in sporting equipment, including bicycles, where weight reduction and durability are essential for enhanced performance.

3. Advantages: Aluminum gears offer several advantages:

  • Lightweight: Aluminum gears contribute to weight reduction in systems, resulting in improved energy efficiency and performance.
  • Corrosion Resistance: Aluminum alloys can exhibit good corrosion resistance, making them suitable for applications where exposure to moisture or harsh environments is a concern.
  • Low Noise: Aluminum gears can help reduce noise levels in gear systems due to their natural damping properties.
  • Heat Dissipation: Aluminum’s high thermal conductivity allows for effective heat dissipation, making it suitable for applications where temperature management is important.
  • Cost-Effective: Aluminum is relatively inexpensive compared to other metals, making aluminum gears a cost-effective option for various applications.

4. Limited Load Capacity: It’s important to note that aluminum gears have lower strength compared to steel gears, limiting their load-carrying capacity. They are typically used in applications with lighter loads and lower torque requirements.

5. Proper Lubrication: Lubrication is crucial for aluminum gears to minimize friction and wear. It’s important to use lubricants specifically designed for aluminum gears and follow appropriate maintenance practices to ensure their optimal performance and longevity.

Overall, aluminum gears provide lightweight, corrosion-resistant, and cost-effective solutions for various applications. They are commonly used in automotive, aerospace, robotics, electrical and electronics, and sports equipment industries, among others, where weight reduction, corrosion resistance, and noise reduction are key considerations.

China Hot selling CNC Aluminum Anodized Car Gear Shift gear ratio calculatorChina Hot selling CNC Aluminum Anodized Car Gear Shift gear ratio calculator
editor by CX 2024-01-11