Product Description

Company Profile

 

Workshop

Detailed Photos

Product Description

 

Material Alloy Steel, Copper alloy(brass,silicon bronze,phosphor bronze,aluminum bronze,beryllium copper),Stainless Steel,Aluminum,Titanium, Magnesium, Superalloys,Molybdenum, Invar,,Zinc,Tungsten steel,incoloy,Nickel 200,Hastelloy, Inconel,Monel,ABS, PEEK,PTFE,PVC,Acetal.
Surface Treatment Zn-plating, Ni-plating, Cr-plating, Tin-plating, copper-plating, the wreath oxygen resin spraying, the heat disposing, hot-dip galvanizing, black oxide coating, painting, powdering, color zinc-plated, blue black zinc-plated, rust preventive oil, titanium alloy galvanized, silver plating, plastic, electroplating, anodizing etc.
Producing Equipment CNC machine,automatic lathe machine,CNC milling machine,lasering,tag grinding machine etc.
Drawing Format Pro/E, Auto CAD, CHINAMFG Works, UG, CAD/CAM, PDF
Managing Returned Goods With quality problem or deviation from drawings
Warranty Replacement at all our cost for rejected products
Main Markets North America, South America, Eastern Europe , West Europe , North Europe, South Europe, Asia
How to order * You send us drawing or sample
* We carry through project assessment
* We make the sample and send it to you after you confirmed our design
* You confirm the sample then place an order and pay us 30% deposit
* We start producing
* When the goods is done, you pay us the balance after you confirmed pictures or tracking numbers.
* Trade is done, thank you!!

 

Quality Control

Packaging & Shipping

Customer Reviews

FAQ

Q1:What kind of information do you need for quotation?
A: You can provide 2D/3D drawing or send your sample to our factory, then we can make according to your sample.

Q2: Can we CHINAMFG NDA?
A: Sure. We can CHINAMFG the NDA before got your drawings.

Q3: Do you provide sample?
A: Yes, we can provide you sample before mass order.

Q4: How can you ensure the quality?
A: We have profesional QC,IQC, OQC to guarantee the quality.

Q5: Delivery time?
A: For samples genearlly need 25 days. Mass production: around 30~45 days after receipt of deposit (Accurate delivery time
depends on specific items and quantities)

Q6: How about the transportation?
A: You can choose any mode of transportation you want, sea delivery, air delivery or door to door express.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Stainless Steel
Customization:
Available

|

Customized Request

aluminum gear

How do aluminum gears perform in different environments?

The performance of aluminum gears in different environments can vary depending on several factors. Here’s a detailed explanation:

1. Corrosive Environments: Aluminum gears generally offer good corrosion resistance, especially when compared to materials like steel. They can perform well in environments where exposure to moisture, chemicals, or corrosive substances is common. However, in highly acidic or alkaline environments, aluminum may not provide sufficient corrosion resistance, and alternative materials or protective coatings may be required.

2. High-Temperature Environments: Aluminum has a relatively low melting point compared to some other metals. In high-temperature environments, aluminum gears can experience thermal expansion, which may affect their dimensional stability and operating characteristics. Additionally, prolonged exposure to high temperatures can weaken aluminum alloys and reduce their mechanical properties. Therefore, in applications involving high temperatures, careful consideration of alloy selection and thermal management measures is necessary.

3. Low-Temperature Environments: Aluminum gears generally perform well in low-temperature environments. They exhibit good ductility and toughness even at low temperatures, allowing them to withstand sub-zero conditions without significant loss of performance. This makes aluminum gears suitable for applications in cold climates or environments.

4. High-Humidity Environments: Aluminum gears can tolerate high humidity environments without significant performance degradation. However, there is a risk of moisture absorption by the aluminum material, which can lead to galvanic corrosion or degradation of lubricating properties. Proper sealing, lubrication, and preventive maintenance practices are important to mitigate these risks.

5. Abrasive Environments: In environments where gears are exposed to abrasive particles or high levels of wear, aluminum gears may not offer the same level of wear resistance as materials like steel or hardened alloys. The relatively softer nature of aluminum can result in accelerated wear or damage to the gear teeth. In such cases, surface treatments, coatings, or alternative materials may be necessary to enhance wear resistance.

6. Electrical Environments: Aluminum is an electrically conductive material. In electrical environments, there is a possibility of electrical arcing or the formation of galvanic couples with dissimilar metals. Proper insulation, grounding, and preventive measures should be implemented to avoid any adverse effects on gear performance or electrical systems.

It’s important to consider the specific environmental conditions and requirements of the gear application when assessing the performance of aluminum gears. In many cases, aluminum gears can perform satisfactorily in various environments with proper design, material selection, lubrication, and maintenance practices. However, for extreme or highly specialized environments, alternative materials or additional protective measures may be necessary.

In summary, the performance of aluminum gears in different environments depends on factors such as corrosion resistance, temperature effects, humidity, abrasion resistance, electrical properties, and specific application considerations. Understanding these factors and implementing appropriate measures ensures optimal performance and durability of aluminum gears in diverse environmental conditions.

aluminum gear

Can aluminum gears be used in renewable energy systems?

Yes, aluminum gears can be used in renewable energy systems. Here’s a detailed explanation:

1. Lightweight and Efficient: Aluminum gears offer the advantage of being lightweight, which is beneficial in renewable energy systems where weight reduction can enhance overall efficiency. For example, in wind turbines, lighter gears reduce the stress on the turbine structure and enable more efficient power generation by reducing the inertia and drag on the rotor.

2. Corrosion Resistance: Aluminum alloys exhibit good corrosion resistance, making them suitable for use in renewable energy systems that are often exposed to outdoor environments. This corrosion resistance ensures the durability and longevity of the gears, even in challenging weather conditions.

3. High Strength-to-Weight Ratio: Despite being lightweight, aluminum alloys can provide adequate strength and durability required for the demanding operational conditions in renewable energy systems. The high strength-to-weight ratio of aluminum gears allows for efficient power transmission while minimizing the weight and size of the gear components.

4. Compatibility with Lubricants: Aluminum gears are compatible with various lubricants commonly used in renewable energy systems. Proper lubrication reduces friction, wear, and heat generation, ensuring smooth and efficient gear operation. The compatibility of aluminum gears with lubricants simplifies maintenance and extends the lifespan of the gear system.

5. Design Flexibility: Aluminum is a highly formable material, allowing for versatile gear design possibilities. Engineers can optimize gear geometries and tooth profiles to improve efficiency, reduce noise, and enhance overall system performance. The design flexibility of aluminum gears enables customization to meet the specific requirements of renewable energy applications.

6. Cost-Effectiveness: Aluminum gears offer cost advantages over other materials such as steel or high-performance alloys. The lower material cost and ease of manufacturing aluminum gears contribute to cost-effective solutions in renewable energy systems, making them an attractive option for gear applications.

7. Reduced Environmental Impact: Aluminum is a highly recyclable material, aligning with the sustainability goals of renewable energy systems. The recyclability of aluminum gears reduces the environmental impact and supports the circular economy by conserving resources and reducing waste.

8. Specific Applications: Aluminum gears find applications in various renewable energy systems, including wind turbines, solar power systems, hydroelectric generators, and tidal energy converters. In each of these applications, aluminum gears contribute to efficient power conversion, improved system performance, and reduced maintenance requirements.

Overall, aluminum gears offer several advantages for use in renewable energy systems, including lightweight design, corrosion resistance, high strength-to-weight ratio, compatibility with lubricants, design flexibility, cost-effectiveness, reduced environmental impact, and suitability for specific applications. These qualities make aluminum gears a viable choice for maximizing the performance and efficiency of renewable energy systems.

aluminum gear

What are the advantages of using aluminum gears in machinery?

Using aluminum gears in machinery offers several advantages. Here’s a detailed explanation:

1. Lightweight: One of the primary advantages of aluminum gears is their lightweight nature. Aluminum is significantly lighter than other commonly used gear materials such as steel or cast iron. This lightweight property reduces the overall weight of the machinery, resulting in benefits such as improved energy efficiency, reduced inertia, and easier handling and installation.

2. Corrosion Resistance: Aluminum gears can exhibit good corrosion resistance, especially when they are made from corrosion-resistant aluminum alloys. This makes them suitable for machinery operating in environments where exposure to moisture, chemicals, or other corrosive substances is a concern. The corrosion resistance of aluminum gears helps prolong their lifespan and ensures reliable performance in such conditions.

3. Low Noise: Aluminum gears have inherent damping properties that help reduce noise levels in machinery. The natural damping characteristics of aluminum help absorb vibrations and minimize noise generation during gear operation. This makes aluminum gears particularly advantageous in applications where noise reduction is important, such as in precision machinery or equipment used in noise-sensitive environments.

4. Heat Dissipation: Aluminum has excellent thermal conductivity, allowing for effective heat dissipation. When used in machinery, aluminum gears can help dissipate heat generated during operation, preventing overheating and maintaining optimal operating temperatures. Efficient heat dissipation contributes to the longevity and reliability of the machinery components.

5. Cost-Effective: Aluminum is generally more cost-effective compared to other metals commonly used for gears, such as steel or bronze. The abundance of aluminum as a raw material and its relatively low production costs make aluminum gears a cost-effective choice for machinery manufacturers. Additionally, the lightweight nature of aluminum gears can lead to cost savings in terms of transportation, installation, and energy consumption.

6. Design Flexibility: Aluminum gears offer design flexibility due to their ease of machining and formability. They can be manufactured with intricate tooth profiles and custom geometries to suit specific machinery requirements. The design flexibility of aluminum gears allows for optimization of gear performance, efficiency, and load-carrying capacity.

7. Electrical Conductivity: Aluminum is an excellent conductor of electricity. In machinery where electrical conductivity is required, such as in electric motors or equipment with electromagnetic components, aluminum gears can help facilitate efficient electrical connections and reduce electrical losses.

While aluminum gears offer numerous advantages, it’s important to consider their limitations. Aluminum has lower strength compared to materials like steel, which may restrict their use in high-load or high-torque applications. Additionally, proper lubrication and maintenance practices are crucial to ensure optimal performance and prevent excessive wear in aluminum gears.

In summary, the advantages of using aluminum gears in machinery include their lightweight nature, corrosion resistance, low noise levels, heat dissipation capabilities, cost-effectiveness, design flexibility, and electrical conductivity. These advantages make aluminum gears suitable for a wide range of machinery applications, particularly those where weight reduction, corrosion resistance, noise reduction, and thermal management are essential considerations.

China Standard OEM Factory Micro Sprint High Tech Aluminum Gear Rack Replacement Micro Sprint Parts bevel gearboxChina Standard OEM Factory Micro Sprint High Tech Aluminum Gear Rack Replacement Micro Sprint Parts bevel gearbox
editor by CX 2024-01-05